化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 46-50.doi: 10.11949/0438-1157.20191314

• 热力学 • 上一篇    下一篇

回热式布雷顿热泵的生态学性能优化研究

徐捷1(),王浚2,庞丽萍2,刘猛2   

  1. 1.北京机械设备研究所,北京 100854
    2.北京航空航天大学航空科学与工程学院,北京 100191
  • 收稿日期:2019-11-04 修回日期:2019-11-14 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 徐捷 E-mail:buaaxujie@163.com
  • 作者简介:徐捷(1987—),男,博士,高工,buaaxujie@163.com

Performance optimization of regenerated Brayton heat pump based on ecological coefficient of performance criterion

Jie XU1(),Jun WANG2,Liping PANG2,Meng LIU2   

  1. 1.Beijing Mechanical Equipment Institute, Beijing 100854, China
    2.School of Aeronautics Science and Engineering, Beihang University, Beijing 100191, China
  • Received:2019-11-04 Revised:2019-11-14 Online:2020-04-25 Published:2020-05-22
  • Contact: Jie XU E-mail:buaaxujie@163.com

摘要:

鉴于工业发展与环境保护之间的矛盾愈发尖锐,对于空气源热泵的研究亦愈发受到重视。针对不可逆回热式布雷顿热泵,以制冷量与循环熵产之比(ECOP)为优化目标,进行了系统性能优化与分析。该系统的优化分析过程充分考虑了不可逆度,冷/热边换热器、回热器的有限换热效率,压缩机、膨胀机的非等熵压缩/膨胀损失以及系统热损等因素,通过理论分析与数值推导,得出了生态学性能系数最优条件下的系统运行匹配参数关系。

关键词: 热泵, 布雷顿, 回热式, 生态学

Abstract:

Due to the destruction of the ozone sphere by chlorofluorocarbon (CFC) and the pressure of environment protection, the traditional vapor-compression heat pump using CFC as working fluid is increasingly restricted. Brayton heat pump, of which working fluid is environmental-safe air has been paid more attention. The Brayton heat pump cycle is one of the most important air heat pump cycles. In this paper, a performance analysis and optimization of a regenerated Brayton heat pump cycle has been carried out by taking the ecological coefficient of performance (ECOP), i.e., the ratio of heat load to the loss rate of availability (or entropy generation rate), as the optimization objective. The irreversibilities considered in the analysis include the finite heat transfer rate in the hot- and cold-side heat exchangers and the regenerator, the non-isentropic compression and expansion losses in the compressor and expander, and the heat leakage. The maximum of the ecological performance criterion and the corresponding optimal conditions have been derived analytically. The effects of the temperature of the working fluid on the performance of this cycle have been investigated. The influences of the effectiveness of the regenerator as well as the hot- and cold-side heat exchangers, the isentropic efficiencies of the compressor and expander on the ECOP are examined and shown by numerical examples.

Key words: heat pump, Brayton, regenerated, ecological

中图分类号: 

  • TK 123

图1

回热式布雷顿热泵循环图E—膨胀机;C—压缩机;R—回热器;HE—高温侧换热器;CE—低温侧换热器"

图2

回热式布雷顿热泵温熵图"

图3

换热器有效度变化下ECOP与R的关系"

图4

熵产率与泵热系数、生态学性能系数、泵热率和生态学目标的关系"

1 Blanchard C H. Coefficient of finite speed heat pump[J]. Journal of Applied Physics, 1980, 51(5): 2471-2472.
2 陈林根, 孙丰瑞, 陈文振. 热电制冷和泵热循环的有限时间热力学分析[J]. 工程热物理学报, 1994, 15(1): 13-16.
Chen L G, Sun F R, Chen W Z. Finite time thermodynamic analysis for the thermoelectric refrigerator and heat pump[J]. Journal of Engineering Thermophysics, 1994, 15(1): 13-16.
3 孙丰瑞, 陈林根, 龚建政, 等. 一类不可逆热泵的有限时间热力学性能[J]. 工程热物理学报, 1995, 16(1):13-16.
Sun F R, Chen L G, Gong J Z, et al. Finite time thermodynamic performance of a class of irreversible heat pumps[J]. Journal of Engineering Thermophysics, 1995, 16(1): 13-16.
4 Chen L G, Wu C, Sun F R. Heat transfer effect on specific heating load of heat pump[J]. Applied Thermal Engineering, 1997, 17(1): 103-110.
5 Chen L G, Wu C, Sun F R. Heat pump performance with internal heat leak[J]. International Journal of Ambient Energy, 1997, 18(3): 129-134.
6 Zhu X Q, Chen L G, Sun F R, et al. Optimum performance of a generalized irreversible Carnot heat pump with a generalized heat transfer law[J]. Physica Scripta, 2001, 64(6): 584-587.
7 Ali K, Bahir S, Tamer Y. Effects of internal irreversibility and heat leakage on the finite time thermoeconomic performance of refrigerators and heat pumps[J]. Energy Conversion and Management, 2000, 41(6): 607-619.
8 Angulo-Brown F. An ecological optimization criterion for finite time heat engines[J]. Journal of Applied Physics, 1991, 69(1): 7465-7469.
9 Yan Z J. Comment of “ecological optimization criterion for finite-time heat engines” [J]. Journal of Applied Physics, 1993, 73(1): 3583.
10 Yasin U, Aykut S, Bahri S. Ecological performance analysis of an endoreversible regenerative Brayton heat engine[J]. Applied Energy, 2005, 80(3): 247-260.
11 Yasin U, Bahri S, Oguz S S. Performance analysis and optimization of an irreversible dual-cycle based on an ecological coefficient of performance criterion[J]. Applied Energy, 2005, 82(1): 23-39.
12 Yasin U. Ecological performance analysis and optimization of power-generation systems [D]. Turkey: Yildiz Technical University, 2004.
13 Ning N, Chen L G, Wu C, et al. Performance analysis for endoreversible closed regenerated Brayton heat pump cycle[J]. Energy Conversion and Management, 1999, 40(4): 393-406.
14 秦晓勇, 陈林根, 孙丰瑞. 内可逆四热源吸收式热泵生态学最优性能[J]. 热能动力工程, 2004, 19(5): 502-505.
Qin X Y, Chen L G, Sun F R. Ecological optimal performance of endoreversible four-heat-source absorption type of heat pump[J]. Journal of Engineering for Thermal Energy & Power, 2004, 19(5): 502-505.
15 郑兆平, 陈林根, 孙丰瑞. 广义不可逆卡诺热泵的有限时间火用经济性能优化[J]. 制冷, 2006, 25(4): 1-6.
Zheng Z P, Chen L G, Sun F R. Finite-time exergy economic performance optimization for generalized irreversible Carnot heat pump[J]. Refrigeration, 2006, 25(4): 1-6.
[1] 罗坤, 毛晓东, 庞丽萍. 新型直升机热泵空调系统驾驶舱热控性能[J]. 化工学报, 2020, 71(S1): 187-193.
[2] 杜伯尧, 全贞花, 侯隆澍, 赵耀华, 任海波. 新型光伏直膨式太阳能/空气能多能互补热泵性能[J]. 化工学报, 2020, 71(S1): 368-374.
[3] 马坤茹, 李雪峰, 李思琦, 高翠娟. 新型太阳能/空气能直膨式热泵与空气源热泵供热性能对比[J]. 化工学报, 2020, 71(S1): 375-381.
[4] 郭栋才, 盛强, 杨鹏, 徐捷, 王泽, 杨波, 曹娇坤. 基于热电效应的高效环控系统[J]. 化工学报, 2020, 71(S1): 404-410.
[5] 王刚, 赵琰. 土壤源热泵供暖间歇运行时间的计算分析[J]. 化工学报, 2020, 71(S1): 430-435.
[6] . 将CO2、R170和R41应用于跨临界空气源热泵热水器系统的性能对比研究[J]. 化工学报, 2020, 71(S1): 51-56.
[7] 臧立静, 黄克谨, 苑杨, 钱行, 张亮, 王韶峰, 陈海胜. 轻组分绝对占优的蒸汽再压缩隔离壁蒸馏塔的最优拓扑结构[J]. 化工学报, 2020, 71(4): 1696-1711.
[8] 尹应德, 朱冬生, 刘世杰, 叶周, 王飞扬. 双缸滚动转子式压缩机采暖热泵低温制热性能[J]. 化工学报, 2019, 70(S2): 220-227.
[9] 邱君君, 张小松, 李玮豪. 无霜空气源热泵系统冬季除湿性能初步实验[J]. 化工学报, 2019, 70(4): 1605-1613.
[10] 江爱朋, 张全南, 王浩坤, 丁强, 徐炜峰, 王剑. 一种改进的热泵供暖系统动态实时优化策略[J]. 化工学报, 2019, 70(4): 1494-1504.
[11] 陆繁莉, 葛天舒, 代彦军, 王如竹. 新型半解耦式除湿热泵系统的降温除湿性能[J]. 化工学报, 2018, 69(S2): 55-60.
[12] 邹臣堡, 冉小鹏, 翟晓强, 骆琼. 补气增焓热泵机组在供热工况下的噪声特性[J]. 化工学报, 2018, 69(S2): 109-115.
[13] 吴迪, 胡斌, 王如竹, 江南山, 李子亮, 余京京. 采用自然工质水的高温热泵系统性能分析[J]. 化工学报, 2018, 69(S2): 95-100.
[14] 牛建会, 许树学, 刘帅领, 马国远. 带毛细管的变频压缩机空气源热泵实验研究[J]. 化工学报, 2018, 69(S2): 180-185.
[15] 李敏霞, 李昱翰, 马一太, 王派, 王飞波, 詹浩淼. 小型低温空气源热泵用转子和涡旋压缩机对比[J]. 化工学报, 2018, 69(S2): 379-387.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .