化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3080-3090.doi: 10.11949/0438-1157.20191294

• 流体力学与传递现象 • 上一篇    下一篇

基于内置换热器有机闪蒸循环的热性能研究

黄桂冬1(),张凇源2,葛众1(),解志勇1,相华江1,鄢银连1,袁志鹏1   

  1. 1.云南大学建筑与规划学院,云南 昆明 650504
    2.昆明冶金高等专科学校冶金与矿业学院,云南 昆明 650033
  • 收稿日期:2019-10-30 修回日期:2020-03-23 出版日期:2020-07-05 发布日期:2020-04-29
  • 通讯作者: 葛众 E-mail:1369710142@qq.com;zhongge@hotmail.com
  • 作者简介:黄桂冬(1996—),男,硕士研究生, 1369710142@qq.com
  • 基金资助:
    云南省教育厅科学研究基金项目(2019J0025);云南大学“东陆中青年骨干教师”培养计划(C176220200);云南省教育厅科学研究基金项目(2018JS551);昆明冶金高等专科学校引进人才科研项目(Xxrcxm201802)

Thermal performance study of organic flash cycle based on internal heat exchanger

Guidong HUANG1(),Songyuan ZHANG2,Zhong GE1(),Zhiyong XIE1,Huajiang XIANG1,Yinlian YAN1,Zhipeng YUAN1   

  1. 1.School of Architecture and Urban Planning, Yunnan University, Kunming 650504, Yunnan, China
    2.School of Metallurgy and Mining, Kunming Metallurgy College, Kunming 650033, Yunnan, China
  • Received:2019-10-30 Revised:2020-03-23 Online:2020-07-05 Published:2020-04-29
  • Contact: Zhong GE E-mail:1369710142@qq.com;zhongge@hotmail.com

摘要:

构建了内置换热器有机闪蒸循环(internal heat exchanger organic flash cycle, IHE-OFC)系统模型,采用100~200℃地热水作为热源,以R600a、R600、R601a、R601、R236ea、R227ea、R245fa、R123作为循环工质。研究了IHE-OFC系统的热性能,并以净输出功率为目标函数,对系统进行了优化。结果表明:当热源温度小于等于160℃时,R601 IHE-OFC系统的净输出功率最大;当热源温度大于等于190℃时,R601传统OFC系统的净输出功率最大;当热源温度为170℃时,R601a IHE-OFC系统的净输出功率最大;当热源温度为180℃时,R601a传统OFC系统的净输出功率最大。此外,每一工质均存在一个特征温度,为工质的0.85Pcri所对应的温度与加热器夹点温差之和。且因工质特征温度的影响,IHE-OFC系统的最优闪蒸压力、IHE冷流体温升和系统效率随热源温度的增大而均呈先增大后不变的趋势。

关键词: 有机闪蒸循环, 内置换热器, 中低温热能, 热力学, 优化

Abstract:

In this study, an internal heat exchanger organic flash cycle (IHE-OFC) system model was built, using 100-200 ℃ geothermal water as the heat source, and R600a, R600, R601a, R601, R236ea, R227ea , R245fa, R123 as circulating working fluid. Thermodynamic analysis of the IHE-OFC system is conducted, and the system is optimized with net power output as the optimization objective. Results show that when the heat source temperature is less than or equal to 160℃, the net power output of the R601 IHE-OFC system is maximal. When the heat source temperature is higher than or equal to 190℃,the net power output of the R601 traditional OFC system is maximal. When the heat source temperature is 170℃, the net power output of the R601a IHE-OFC system is maximal. When the heat source temperature is 180℃,the net power output of the R601a traditional OFC system is maximal. Moreover, there is a characteristic temperature for each working fluid, which is the sum of the temperature corresponding to 0.85Pcri and pinch point temperature difference of heater. Due to the influence of the characteristic temperature of the working fluid, the optimal flash pressure, IHE temperature rise on the low temperature side, and the system efficiency initially increases and then remains constant with increasing heat source temperature.

Key words: organic flash cycle, internal heat exchanger, medium and low temperature heat source, thermodynamics, optimization, exergy

中图分类号: 

  • TK 123

表1

R124的OFC与ORC的功率比较[16]"

热源温度/℃ORC净输出功率/kWOFC净输出功率/kW相对增量/%
124340.53363.046.61
126391.18422.147.91
128444.65478.427.60
130495.31526.276.25
132540.34585.378.33
134593.81636.027.11
136644.47692.317.42
138686.68740.157.79
140737.34790.817.25
142787.99841.466.79
144830.21897.758.14
146880.86948.417.67
148925.89990.626.99
150976.551041.286.63
1521018.761091.937.18
1541066.601139.776.86
1561111.631190.437.09
1581156.661241.097.30
1601201.691286.127.03

图1

IHE-OFC系统"

图2

IHE-OFC系统T-s图"

表2

工质主要热物性和环保性能"

工质摩尔质量/(g·mol-1)流体类型标准沸点/℃临界温度/℃临界压力/MPaGWPODP
R600a58.12干流体-11.7134.73.63~200
R60058.12干流体-0.49152.03.80~200
R601a72.15干流体27.83187.23.38~200
R60172.15干流体36.06196.63.37~200
R236ea152.04干流体6.19139.33.367100
R227ea170.03干流体-16.34101.82.9335000
R245fa134.05等熵流体15.14154.03.658200
R123152.93等熵流体27.82183.73.361200

表3

本文结果与文献结果的比较"

T3/KPF/MPah5/(kJ·kg-1)h6/ (kJ·kg-1)
本文文献[12]相对误差/%本文文献[12]相对误差/%
4131.2707.13706.550.08664.01663.640.06
4131.4716.27715.790.07667.35667.060.04
4131.6724.01723.630.05670.11669.920.03
4131.8730.53730.280.03672.34672.250.01
4132.0735.98735.850.02674.05674.040.00

表4

IHE-OFC系统参数设置"

参数数值
热源温度/ ℃100~200
热流体流率/(kg·s-1)1
热流体压力/ MPa0.5,1.2,1.6
透平等熵效率/%68
工质泵等熵效率/%68
冷却水泵效率/%85
冷却水入口温度/℃25
冷却水温升/℃5
加热器夹点温差/℃10
冷凝器夹点温差/℃5
内置换热器传热温差/℃5
环境温度/℃15

图3

计算流程"

图4

最优闪蒸压力随热源温度的变化"

图5

IHE冷流体温升随热源温度的变化"

图6

IHE-OFC系统最大净输出功率随热源温度的变化"

图7

IHE-OFC系统效率随热源温度的变化"

图8

IHE-OFC系统效率随热源温度的变化"

图9

IHE-OFC系统总损随热源温度的变化"

图10

IHE损随热源温度的变化"

表5

传统OFC系统与IHE-OFC系统净输出功率的比较"

热源温

度/℃

R600aR600R601aR601
传统OFCIHE-OFC相对增量/%传统OFCIHE-OFC相对增量/%传统OFCIHE-OFC相对增量/%传统OFCIHE-OFC相对增量/%
1000.520.555.611.421.462.233.113.161.753.383.431.50
1102.252.302.163.203.251.605.205.281.555.515.581.39
1204.764.831.425.575.641.287.837.941.418.178.271.26
1308.358.420.868.648.731.0111.0111.141.2311.3711.491.12
14011.3711.470.8512.6212.710.7014.8415.001.0215.1815.320.98
15012.4812.792.4617.9818.030.2919.3819.530.7819.6319.790.80
16013.8814.111.6620.8721.010.6524.7224.840.4824.8124.950.57
17015.1515.441.9722.7823.041.1731.0731.100.0930.8830.960.27
18016.4216.792.2324.7025.091.6138.8938.5538.0237.98
19017.7118.142.4626.6327.161.9946.5545.7946.9046.30
20019.0119.512.6628.5929.252.3349.9749.7154.8553.90
1 Yang F B, Dong X R, Zhang H G, et al. Performance analysis of waste heat recovery with a dual loop organic Rankine cycle (ORC) system for diesel engine under various operating conditions[J]. Energy Conversion and Management, 2014, 80: 243-255.
2 Ge Z, Wang H, Wang H T, et al. Main parameters optimization of regenerative organic Rankine cycle driven by low-temperature flue gas waste heat[J]. Energy, 2015, 93: 1886-1895.
3 Li J, Ge Z, Duan Y Y, et al. Design and performance analyses for a novel organic Rankine cycle with supercritical-subcritical heat absorption process coupling[J]. Applied Energy, 2019, 235: 1400-1414.
4 Ge Z, Li J, Liu Q, et al. Thermodynamic analysis of dual-loop organic Rankine cycle using zeotropic mixtures for internal combustion engine waste heat recovery[J]. Energy Conversion and Management, 2018, 166: 201-214.
5 Liu Q, Duan Y Y, Yang Z. Performance analyses of geothermal organic Rankine cycles with selected hydrocarbon working fluids[J]. Energy, 2013, 63: 123-132.
6 Meng F X, Wang E H, Zhang B, et al. Thermo-economic analysis of transcritical CO2 power cycle and comparison with Kalina cycle and ORC for a low-temperature heat source[J]. Energy Conversion and Management, 2019, 195: 1295-1308.
7 Li J, Pei G, Li Y Z, et al. Energetic and exergetic investigation of an organic Rankine cycle at different heat source temperatures[J]. Energy, 2012, 38: 85-95.
8 Bao J J, Zhao L. A review of working fluid and expander selections for organic Rankine cycle[J]. Renewable and Sustainable Energy Reviews, 2013, 24: 325-342.
9 Mondal S, De S. Power by waste heat recovery from low temperature industrial flue gas by organic flash cycle (OFC) and transcritical-CO2 power cycle: a comparative study through combined thermodynamic and economic analysis[J]. Energy, 2017, 121: 832-840.
10 Ho T, Mao S S, Greif R. Increased power production through enhancements to the Organic Flash Cycle (OFC)[J]. Energy, 2012, 45(1): 686-695.
11 Mosaffa A H, Zareei A. Proposal and thermoeconomic analysis of geothermal flash binary power plants utilizing different types of organic flash cycle[J]. Geothermics, 2018, 72: 47-63.
12 Mondal S, Alam S, De S. Performance assessment of a low grade waste heat driven organic flash cycle (OFC) with ejector[J]. Energy, 2018, 163: 849-862.
13 Ho T, Mao S S, Greif R. Comparison of the Organic Flash Cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy[J]. Energy, 2012, 42: 213-223.
14 Lee H Y, Park S H, Kim K K. Comparative analysis of thermodynamic performance and optimization of organic flash cycle (OFC) and organic Rankine cycle (ORC)[J]. Applied Thermal Engineering, 2016, 100: 680-890.
15 Baccioli A, Antonelli M, Desideri U. Technical and economic analysis of organic flash regenerative cycles (OFRCs) for low temperature waste heat recovery[J]. Applied Energy, 2017, 199: 69-87.
16 Varma G V P, Srinivas T. Power generation from low temperature heat recovery[J]. Renewable and Sustainable Energy Reviews, 2016, 75: 402-414.
17 高增丽, 刘永启, 高振强. 管内介质为蒸汽状态下的填充床内置换热器外壁传热[J]. 冶金能源, 2018, 37(4): 29-32.
Gao Z L, Liu Y Q, Gao Z Q. Outer wall heat transfer of heat exchanger embedded in honeycomb ceramic packed bed under condition of steam flow medium[J]. Energy for Metallurgical Industry, 2018, 37(4): 29-32.
18 高增丽, 刘永启, 高振强, 等. 基于煤矿乏风热氧化的填充床内置换热器取热特性[J]. 煤炭学报, 2015, 40(6): 1402-1407.
Gao Z L, Liu Y Q, Gao Z Q, et al. Heat extraction characteristic of packed bed embedded heat exchanger based on thermal oxidation of coal mine VAM[J]. Journal of China Coal Society, 2015, 40(6): 1402-1407.
19 李惟毅, 郭强, 高静. 内置换热器的不同工质ORC系统的综合评价分析[J]. 化工进展, 2015, 34(8): 2977-2982.
Li W Y, Guo Q, Gao J. Comprehensive evaluation analysis of ORC system using different working media with internal heat exchanger[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 2977-2982.
20 卢金玲, 张洁, 郑亚, 等. 边界条件对非共沸混合工质有机朗肯循环的影响[J]. 工程热物理学报, 2018, 39(2): 256-261.
Lu J L, Zhang J, Zheng Y, et al. Influence of different restrictive condensation on the thermodynamic performance of organic Rankine cycle using zeotropic mixtures[J]. Journal of Engineering Thermophysics, 2018, 39(2): 256-261.
21 Lu J L, Zhang J, Chen S L, et al. Analysis of organic Rankine cycles using zeotropic mixtures as working fluids under different restrictive conditions[J]. Energy Conversion and Management, 2016, 126: 704-716.
22 苏文, 赵力, 邓帅. 基于工质物性的热力循环性能探索[J]. 科学通报, 2018, 63(2): 232-240.
Su W, Zhao L, Deng S. The performance of thermodynamic cycles based on the properties of working fluids[J]. Chinese Science Bulletin, 2018, 63(2): 232-240.
23 陈玉婷, 徐燕燕, 王磊, 等. 蒸发器换热过程对ORC系统混合工质选择和运行工况的影响[J]. 化工学报, 2019, 70(5): 1723-1733.
Chen Y T, Xu Y Y, Wang L, et al. Effect of evaporator heat transfer process on selection of mixture and operating condition in ORC system[J]. CIESC Journal, 2019, 70(5): 1723-1733.
24 李鹏, 韩中合, 贾晓强, 等. 动态透平效率对有机朗肯循环系统性能的影响[J]. 化工学报, 2019, 70(4): 1532-1541.
Li P, Han Z H, Jia X Q, et al. Influence of dynamic turbine efficiency on performance of organic Rankine cycle system[J]. CIESC Journal, 2019, 70(4): 1532-1541.
25 刘茜, 李华山, 卜宪标, 等. 太阳能有机朗肯-闪蒸循环工质选择[J]. 化工进展, 2018, 37(5): 1781-1788.
Liu X, Li H S, Bu X B, et al. Working fluid selection for solar binary-flashing cycle[J]. Chemical Industry and Engineering Progress, 2018, 37(5): 1781-1788.
26 高建强, 孙鑫, 曲振肖, 等. 太阳能超临界有机朗肯循环的工质选择和性能分析[J]. 太阳能学报, 2015, 36(8): 2002-2007.
Gao J Q, Sun X, Qu Z X, et al. Selection of working fluid and performance analysis of solar supercritical organic Rankine cycle[J]. Acta Energiae Solaris Sinica, 2015, 36(8): 2002-2007.
27 高乃平, 吴继盛, 朱彤. 采用二元非共沸工质的有机朗肯循环热力学分析[J]. 同济大学学报(自然科学版), 2018, 46(8): 1122-1130.
Gao L P, Wu J S, Zhu T. Thermodynamic analysis of organic Rankine cycle based on binary zeotropic mixtures[J]. Journal of Tongji University (Natural Science), 2018, 46(08): 1122-1130.
28 朱启的, 孙志强, 周孑民. 工质类型对回收中低温余热有机朗肯循环性能的影响[J]. 中南大学学报(自然科学版), 2013, 44(3): 1215-1220.
Zhu Q D, Sun Z Q, Zhou Z M. Effect of working fluid types on performance of organic Rankine cycle for low-and-medium temperature waste heat recovery[J]. Journal of Tongji University (Natural Science), 2013, 44(3): 1215-1220.
29 Yang F B, Chu Q F, Liu Q, et al. The cubic-plus-association equation of state for hydrofluorocarbons, hydrofluoroolefins, and their binary mixtures[J]. Chemical Engineering Science, 2019, 209: 115-182.
30 Liu X, Li H S, Bu X B, et al. Performance characteristics and working fluid selection for low-temperature binary-flashing cycle[J]. Applied Thermal Engineering, 2018, 141: 51-60.
31 Wang W,He S,Guo S,et al. A combined experimental and simulation study on charging process of Erythritol-HTO direct-blending based energy storage system[J]. Energy Conversion and Management, 2014, 83(7): 306-313.
32 Li J, Ge Z, Duan Y Y, et al. Performance analyses and improvement guidelines for organic Rankine cycles using R600a/R601a mixtures driven by heat sources of 100°C to 200°C[J]. International Journal of Energy Research, 2019, 43(2): 905-920.
33 Lemort V, Quoilin S, Cuevas C, et al. Testing and modeling a scroll expander integrated into an Organic Rankine Cycle[J]. Applied Thermal Engineering, 2009, 29(14/15): 3094-3102.
[1] 裴后举, 蒋彦龙, 施红, 崔永龙, 陈常栋, 钱晓辉. 基于M-L湍流模型的浮空器强迫对流换热[J]. 化工学报, 2020, 71(S1): 136-141.
[2] 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171.
[3] 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186.
[4] 王晨, 折晓会, 张小松. 含空气净化过程的液态空气储能热力学研究[J]. 化工学报, 2020, 71(S1): 23-30.
[5] 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37.
[6] 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321.
[7] 孟繁鑫, 孙佳宁, 周月, 高赞军, 程定斌. 飞机环控系统空气循环机仿真建模及试验校核[J]. 化工学报, 2020, 71(S1): 328-334.
[8] 徐刚, 庞丽萍. 特种车辆舱室送风系统布局仿真优化[J]. 化工学报, 2020, 71(S1): 335-340.
[9] 周月, 张鹤林, 程定斌, 尹俊成. 典型空气循环制冷系统仿真研究[J]. 化工学报, 2020, 71(S1): 341-345.
[10] 郭良, 李恒, 庞丽萍, 毛晓东, 赵竞全, 杨晓东. 高速运载器发电/制冷联合系统稳态性能[J]. 化工学报, 2020, 71(S1): 391-396.
[11] 郭栋才, 盛强, 杨鹏, 徐捷, 王泽, 杨波, 曹娇坤. 基于热电效应的高效环控系统[J]. 化工学报, 2020, 71(S1): 404-410.
[12] 杨晓东, 庞丽萍, 阿嵘, 金亮. 高速飞行器燃油热管理系统飞行热航时[J]. 化工学报, 2020, 71(S1): 425-429.
[13] 张洁, 庞丽萍, 曲洪权, 王天博. 基于随机配置网络的机载电子吊舱多工况热模型[J]. 化工学报, 2020, 71(S1): 441-447.
[14] 杨东升, 阿嵘, 张建斌, 王大鹏, 张斌, 徐迎丽, 秦俊杰, 刘淑芬. 航天器舱内环境下非金属增材制造热效应分析[J]. 化工学报, 2020, 71(S1): 486-493.
[15] 李攀, 孔慧, 宋卓栋, 张作毅, 王云芳. 甲醇-甲醛-聚甲氧基二甲醚三元体系汽液平衡[J]. 化工学报, 2020, 71(S1): 7-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 许勤勤, 吕龙贤, 陈少云, 郑静, 郑高利, 李永泉. Isolation of Cordyceps ophioglossoides L2 from Fruit Body and Optimization of Fermentation Conditions for Its Mycelial Growth[J]. CIESC Journal, 2009, 17(2): 278 -285 .
[2] 吴晓琴, 童仕唐, 官宝红, 吴忠标. Transformation of Flue-Gas-Desulfurization Gypsum to α-Hemihydrated Gypsum in Salt Solution at Atmospheric Pressure[J]. CIESC Journal, 2011, 19(2): 349 -355 .
[3] 何险峰,温浩,周家驹. 表面活性剂的多尺度模拟 [J]. CIESC Journal, 2000, 51(S1): 61 -64 .
[4] 胡立舜, 王兴军, 高邈, 于广锁, 王辅臣, 于遵宏. 压力式喷嘴雾化过程气液传质性能 [J]. 化工学报, 2008, 59(11): 2733 -2740 .
[5] 孙贺江;由世俊;张欢;涂光备.

空调用金属填料表面传热传质过程的数值分析

[J]. CIESC Journal, 2005, 56(3): 424 -429 .
[6] 宋凯, 李霞, 元英进. OSC-KPCA代谢物组学模式分析技术及应用 [J]. 化工学报, 2007, 58(9): 2341 -2346 .
[7] 刘跃进, 朱福勇, 韩路长, 李毅斌, 谢中权, 李宗会, 刘永杰. 001×7(732)阳离子交换树脂催化醋酸甲酯
水解反应过程模拟与优化
[J]. 化工学报, 2007, 58(10): 2513 -2518 .
[8] 郭天民. 局部组成型的立方转子链状态方程 [J]. CIESC Journal, 1985, 36(1): 1 -10 .
[9] 曾新昌,郭建军. 乳状液膜法从铀矿的硫酸浸出液中提取铀的研究 [J]. CIESC Journal, 1985, 36(4): 485 -493 .
[10] 陈敏恒,袁渭康,张琪宏. 绝热固定床反应器的研究——(Ⅲ)径向反应器着火规律和温度分布 [J]. CIESC Journal, 1985, 36(4): 402 -406 .