化工学报 ›› 2020, Vol. 71 ›› Issue (1): 16-25.doi: 10.11949/0438-1157.20191288

• 综述与专论 • 上一篇    下一篇

功能化离子液体在二氧化碳吸收分离中的应用

崔国凯(),吕书贞,王键吉   

  1. 河南师范大学化学化工学院,绿色化学介质与反应教育部重点实验室,精细化学品绿色制造河南省协同创新中心,河南 新乡 453007
  • 收稿日期:2019-10-30 修回日期:2019-11-13 出版日期:2020-01-05 发布日期:2019-12-02
  • 通讯作者: 王键吉 E-mail:chemcgk@163.com
  • 作者简介:崔国凯(1984—),男,博士,副教授,chemcgk@163.com
  • 基金资助:
    国家自然科学基金项目(U1704251)

Functional ionic liquids for carbon dioxide capture and separation

Guokai CUI(),Shuzhen LYU,Jianji WANG   

  1. Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
  • Received:2019-10-30 Revised:2019-11-13 Online:2020-01-05 Published:2019-12-02
  • Contact: Jianji WANG E-mail:chemcgk@163.com

摘要:

吸收及分离二氧化碳是降低碳排放和应对全球气候变化的主要策略之一,这就必然要求全球科技工作者注重开发具有选择性高效吸收分离二氧化碳的新材料和新路线。作为近20多年来发展的一类代表性的新材料,离子液体(尤其是功能化离子液体)具有独特的物理化学性质,例如几乎没有蒸气压、液态温度范围大、热稳定性和化学稳定性好、电化学窗口宽、不可燃、结构-性质可调控等。这些性质使离子液体在二氧化碳吸收及分离领域受到广泛关注。重点综述了近5年(2015~2019)来功能化离子液体吸收分离二氧化碳的研究进展, 主要内容包括单位点离子液体、多位点离子液体、基于功能化离子液体的混合物、功能化离子液体杂化材料对二氧化碳的吸收分离。同时, 对目前该领域的发展所面临的主要问题和进一步的研究工作进行了分析讨论。

关键词: 离子液体, 二氧化碳, 二氧化碳捕集, 分离, 温室气体控制

Abstract:

Carbon dioxide capture and separation (CCS) is one of the main strategies to reduce carbon emissions and cope with global climate change. It is of great significance to develop highly selective absorbents and new routes to efficiently absorb and separate CO2. Recently, ionic liquids (ILs), especially functional ionic liquids, have been developed as a kind of representative material in the last 20 years due to their unique properties, such as ultra low vapor pressure, wide liquid temperature range, high thermal and chemical stability, wide electrochemical steady window, non-flammability, and tunable structure and properties. Thus, many attentions have been drawn on the absorption and separation of CO2 by using ILs. The current review focuses on the studies on functional ILs for CO2 capture and separation during the last five years (2015—2019), including recent progress on the applications of single site functional ILs, multiple sites functional ILs, functional IL-based mixtures, and functional IL-based hybrid materials in CCS. Finally, the challenges in the absorption and separation of CO2 from flue gas as well as further researches in this field have been discussed.

Key words: ionic liquids, carbon dioxide, CO2 capture, separation, greenhouse gas control

中图分类号: 

  • O 642.1
1 2018中国生态环境状况公报[R]. 北京: 中华人民共和国生态环境部, 2019: 51.
China Ecological Environment Status Bulletin in 2018[R]. Beijing: Ministry of Ecology and Environment of the People s Republic of China, 2019: 51.
2 Global Energy & CO2 Status Report 2018[R]. Paris: International Energy Agency, 2019: 9.
3 Chen H , Tsai T C , Tan C S . CO2 capture using amino acid sodium salt mixed with alkanolamines[J]. Int. J. Greenhouse Gas Control, 2018, 79: 127-133.
4 Lei Z , Chen B , Koo Y M , et al . Introduction: ionic liquids[J]. Chem. Rev., 2017, 117(10): 6633-6635.
5 王键吉, 卓克垒 . 绿色溶剂[M]. 北京: 科学出版社, 2018: 127.
Wang J J , Zhuo K L . Green Solvents[M]. Beijing: Science Press, 2018: 127.
6 Huang Y , Zhang Y , Xing H . Separation of light hydrocarbons with ionic liquids: a review[J]. Chin. J. Chem. Eng., 2019, 27(6): 1374-1382.
7 姚加, 王冠淇, 陈航, 等 . 螯合型离子液体: 合成、性质以及应用[J]. 化工学报, 2018, 69(1): 203-217.
Yao J , Wang G Q , Chen H , et al . Chelate ionic liquids: synthesis, properties and applications[J]. CIESC Journal, 2018, 69(1): 203-217.
8 Yang Q , Zhang Z , Sun X G , et al . Ionic liquids and derived materials for lithium and sodium batteries[J]. Chem. Soc. Rev., 2018, 47(6): 2020-2064.
9 Yoo C G , Pu Y , Ragauskas A J . Ionic liquids: promising green solvents for lignocellulosic biomass utilization[J]. Current Opinion in Green and Sustainable Chemistry, 2017, 5: 5-11.
10 Watanabe M , Thomas M L , Zhang S , et al . Application of ionic liquids to energy storage and conversion materials and devices[J]. Chem. Rev., 2017, 117(10): 7190-7239.
11 王慧勇, 李虹培, 崔国凯, 等 . 离子液体表面活性剂在水溶液中的自组装及其调控研究进展[J]. 物理化学学报, 2016, 32(1): 249-260.
Wang H Y , Li H P , Cui G K , et al . Recent progress in self-assembly of ionic liquid surfactants and its regulation and control in aqueous solutions[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 249-260.
12 崔国凯, 赵宁, 张峰涛, 等 . 离子液体捕集二氧化硫气体的研究进展[J]. 科学通报, 2016, 61(28/29): 3115-3126.
Cui G K , Zhao N , Zhang F T , et al . Progress in SO2 capture by ionic liquids[J]. Chinese Sci. Bull., 2016, 61(28/29): 3115-3126.
13 Ren S , Hou Y , Zhang K , et al . Ionic liquids: functionalization and absorption of SO2 [J]. Green Energy & Environment, 2018, 3(3): 179-190.
14 Li R , Zhao Y , Chen Y , et al . Imidazolate ionic liquids for high-capacity capture and reliable storage of iodine[J]. Communications Chemistry, 2018, 1(1): 69.
15 Egorova K S , Gordeev E G , Ananikov V P . Biological activity of ionic liquids and their application in pharmaceutics and medicine[J]. Chem. Rev., 2017, 117(10): 7132-7189.
16 Zeng S , Zhang X , Bai L , et al . Ionic-liquid-based CO2 capture systems: structure, interaction and process[J]. Chem. Rev., 2017, 117(14): 9625-9673.
17 Bui M , Adjiman C S , Bardow A , et al . Carbon capture and storage (CCS): the way forward[J]. Energy Environ. Sci., 2018, 11(5): 1062-1176.
18 Cui G , Wang J , Zhang S . Active chemisorption sites in functionalized ionic liquids for carbon capture[J]. Chem. Soc. Rev., 2016, 45(15): 4307-4339.
19 Yang Q , Wang Z , Bao Z , et al . New insights into CO2 absorption mechanisms with amino-acid ionic liquids[J]. ChemSusChem, 2016, 9(8): 806-812.
20 Luo X Y , Fan X , Shi G L , et al . Decreasing the viscosity in CO2 capture by amino-functionalized ionic liquids through the formation of intramolecular hydrogen bond[J]. J. Phys. Chem. B, 2016, 120(10): 2807-2813.
21 张慧, 张红梅, 沈锦优, 等 . 氨基功能型离子液体吸收CO2的性能[J]. 化工学报, 2016, 67(12): 5057-5065.
Zhang H , Zhang H M , Shen J Y , et al . Absorption performance of CO2 in amino-functionalized task-specific ionic liquids[J]. CIESC Journal, 2016, 67(12): 5057-5065.
22 Vijayaraghavan R , Oncsik T , Mitschke B , et al . Base-rich diamino protic ionic liquid mixtures for enhanced CO2 capture[J]. Sep. Purif. Technol., 2018, 196: 27-31.
23 Lin W , Pan M , Xiao Q , et al . Tuning the capture of CO2 through entropic effect induced by reversible trans-cis isomerization of light-responsive ionic liquids[J]. J. Phys. Chem. Lett., 2019, 10(12): 3346-3351.
24 Zhu X , Song M , Xu Y . DBU-based protic ionic liquids for CO2 capture[J]. ACS Sustainable Chem. Eng., 2017, 5(9): 8192-8198.
25 Xu Y . CO2 absorption behavior of azole-based protic ionic liquids: influence of the alkalinity and physicochemical properties[J]. J. CO2 Util., 2017, 19: 1-8.
26 Gao F , Wang Z , Ji P , et al . CO2 absorption by DBU-based protic ionic liquids: basicity of anion dictates the absorption capacity and mechanism[J]. Frontiers in Chemistry, 2019, 6: 658.
27 Li F , Bai Y , Zeng S , et al . Protic ionic liquids with low viscosity for efficient and reversible capture of carbon dioxide[J]. Int. J. Greenhouse Gas Control, 2019, 90: 102801.
28 Cui G , Zhao N , Wang J , et al . Computer-assisted design of imidazolate-based ionic liquids for improving sulfur dioxide capture, carbon dioxide capture, and sulfur dioxide/carbon dioxide selectivity[J]. Chem.-Asian J., 2017, 12(21): 2863-2872.
29 Taylor S F R , McClung M , McReynolds C , et al . Understanding the competitive gas absorption of CO2 and SO2 in superbase ionic liquids[J]. Ind. Eng. Chem. Res., 2018, 57(50): 17033-17042.
30 Sheridan Q R , Oh S , Morales-Collazo O , et al . Liquid structure of CO2-reactive aprotic heterocyclic anion ionic liquids from X-ray scattering and molecular dynamics[J]. J. Phys. Chem. B, 2016, 120(46): 11951-11960.
31 Sheridan Q R , Mullen R G , Lee T B , et al . Hybrid computational strategy for predicting CO2 solubilities in reactive ionic liquids[J]. J. Phys. Chem. C, 2018, 122(25): 14213-14221.
32 Mullen R G , Corcelli S A , Maginn E J . Reaction ensemble Monte Carlo simulations of CO2 absorption in the reactive ionic liquid triethyl(octyl)phosphonium 2-cyanopyrrolide[J]. J. Phys. Chem. Lett., 2018, 9(18): 5213-5218.
33 Sheridan Q R , Schneider W F , Maginn E J . Role of molecular modeling in the development of CO2-reactive ionic liquids[J]. Chem. Rev., 2018, 118(10): 5242-5260.
34 Firaha D S , Hollóczki O , Kirchner B . Computer-aided design of ionic liquids as CO2 absorbents[J]. Angew. Chem., Int. Ed., 2015, 54(27): 7805-7809.
35 Goel H , Windom Z W , Jackson A A , et al . CO2 sorption in triethyl(butyl)phosphonium 2-cyanopyrrolide ionic liquid via first principles simulations[J]. J. Mol. Liq., 2019, 292: 111323.
36 Pan M , Cao N , Lin W , et al . Reversible CO2 capture by conjugated ionic liquids through dynamic covalent carbon-oxygen bonds[J]. ChemSusChem, 2016, 9(17): 2351-2357.
37 Zhang X M , Huang K , Xia S , et al . Low-viscous fluorine-substituted phenolic ionic liquids with high performance for capture of CO2 [J]. Chem. Eng. J., 2015, 274: 30-38.
38 Oh S , Morales-Collazo O , Brennecke J F . Cation-anion interactions in 1-ethyl-3-methylimidazolium-based ionic liquids with aprotic heterocyclic anions (AHAs)[J]. J. Phys. Chem. B, 2019, 123(39): 8274-8284.
39 Hu J , Chen L , Shi M , et al . A quantum chemistry study for 1-ethyl-3-methylimidazolium ion liquids with aprotic heterocyclic anions applied to carbon dioxide absorption[J]. Fluid Phase Equilib., 2018, 459: 208-218.
40 Mei K , He X , Chen K , et al . Highly efficient CO2 capture by imidazolium ionic liquids through a reduction in the formation of the carbene-CO2 complex[J]. Ind. Eng. Chem. Res., 2017, 56(28): 8066-8072.
41 Makino T , Umecky T , Kanakubo M . CO2 absorption properties and mechanisms for 1-ethyl-3-methylimidazolium ether-functionalized carboxylates[J]. Ind. Eng. Chem. Res., 2016, 55(50): 12949-12961.
42 Lee T B , Oh S , Gohndrone T R , et al . CO2 chemistry of phenolate-based ionic liquids[J]. J. Phys. Chem. B, 2016, 120(8): 1509-1517.
43 Zhang X , Xiong W , Tu Z , et al . Supported ionic liquid membranes with dual-site interaction mechanism for efficient separation of CO2 [J]. ACS Sustainable Chem. Eng., 2019, 7(12): 10792-10799.
44 陈凤凤, 董艳, 桑晓燕, 等 . 四丁基季 羧酸盐离子液体的物理化学性质与CO2溶解度[J]. 物理化学学报, 2016, 32(3): 605-610.
Chen F F , Dong Y , Sang X Y , et al . Physicochemical properties and CO2 solubility of tetrabutylphosphonium carboxylate ionic liquids[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 605-610.
45 陈凯宏, 梅柯, 李浩然, 等 . 肉桂酸型离子液体的合成及其二氧化碳吸收[J]. 化工学报, 2016, 67(2): 623-626.
Chen K H , Mei K , Li H R , et al . Synthesis of cinnamic acid-based ionic liquids and application in CO2 absorption[J] CIESC Journal, 2016, 67(2): 623-626.
46 Umecky T , Abe M , Takamuku T , et al . CO2 absorption features of 1-ethyl-3-methylimidazolium ionic liquids with 2, 4-pentanedionate and its fluorine derivatives[J]. J. CO2 Util., 2019, 31: 75-84.
47 Zhou Z , Zhou X , Jing G , et al . Evaluation of the multi-amine functionalized ionic liquid for efficient postcombustion CO2 capture[J]. Energy Fuels, 2016, 30(9): 7489-7495.
48 Huang Y , Cui G , Zhao Y , et al . Preorganization and cooperation for highly efficient and reversible capture of low-concentration CO2 by ionic liquids[J]. Angew. Chem., Int. Ed., 2017, 56(43): 13293-13297.
49 韩布兴 . 预组织与协同策略助力离子液体高效可逆捕集低浓度二氧化碳[J]. 物理化学学报, 2018, 34(5): 451-452.
Han B X . Preorganization and cooperation strategy for highly efficient and reversible capture of low-concentration CO2 using ionic liquids[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 451-452.
50 Huang Y , Cui G , Wang H , et al . Tuning ionic liquids with imide-based anions for highly efficient CO2 capture through enhanced cooperations[J]. J. CO2 Util., 2018, 28: 299-305.
51 Huang Y , Cui G , Wang H , et al . Absorption and thermodynamic properties of CO2 by amido-containing anion-functionalized ionic liquids[J]. RSC Adv., 2019, 9(4): 1882-1888.
52 An X , Du X , Duan D , et al . An absorption mechanism and polarity-induced viscosity model for CO2 capture using hydroxypyridine-based ionic liquids[J]. Phys. Chem. Chem. Phys., 2017, 19(2): 1134-1142.
53 Luo X Y , Chen X Y , Qiu R X , et al . Enhanced CO2 capture by reducing cation-anion interactions in hydroxyl-pyridine anion-based ionic liquids[J]. Dalton Trans., 2019, 48(7): 2300-2307.
54 Luo X Y , Lv X Y , Shi G L , et al . Designing amino-based ionic liquids for improved carbon capture: one amine binds two CO2 [J]. AIChE J., 2019, 65(1): 230-238.
55 Pan M , Vijayaraghavan R , Zhou F , et al . Enhanced CO2 uptake by intramolecular proton transfer reactions in amino-functionalized pyridine-based ILs[J]. Chem. Commun., 2017, 53(44): 5950-5953.
56 Zhang Z , Zhang L , He L , et al . Is it always chemical when amino groups come across CO2? Anion-anion-interaction-induced inhibition of chemical adsorption[J]. J. Phys. Chem. B, 2019, 123(30): 6536-6542.
57 Chen F F , Huang K , Zhou Y , et al . Multi-molar absorption of CO2 by the activation of carboxylate groups in amino acid ionic liquids[J]. Angew. Chem., Int. Ed., 2016, 55(25): 7166-7170.
58 Wu Y , Zhao Y , Li R , et al . Tetrabutylphosphonium-based ionic liquid catalyzed CO2 transformation at ambient conditions: a case of synthesis of α-alkylidene cyclic carbonates[J]. ACS Catalysis, 2017, 7(9): 6251-6255.
59 Pan M , Zhao Y , Zeng X , et al . Efficient absorption of CO2 by introduction of intramolecular hydrogen bonding in chiral amino acid ionic liquids[J]. Energy Fuels, 2018, 32(5): 6130-6135.
60 Lin W , Cai Z , Lv X , et al . Significantly enhanced carbon dioxide capture by anion-functionalized liquid pillar[5]arene through multiple-site interactions[J]. Ind. Eng. Chem. Res., 2019, 58(36): 16894-16900.
61 Qian W , Xu Y , Xie B , et al . Alkanolamine-based dual functional ionic liquids with multidentate cation coordination and pyrazolide anion for highly efficient CO2 capture at relatively high temperature[J]. Int. J. Greenhouse Gas Control, 2017, 56: 194-201.
62 Li R , Zhao Y , Li Z , et al . Choline-based ionic liquids for CO2 capture and conversion[J]. Sci. China Chem., 2019, 62(2): 256-261.
63 Vafaeezadeh M , Aboudi J , Hashemi M M . A novel phenolic ionic liquid for 1.5 molar CO2 capture: combined experimental and DFT studies[J]. RSC Adv., 2015, 5(71): 58005-58009.
64 Bhattacharyya S , Filippov A , Shah F U . High CO2 absorption capacity by chemisorption at cations and anions in choline-based ionic liquids[J]. Phys. Chem. Chem. Phys., 2017, 19(46): 31216-31226.
65 Oncsik T , Vijayaraghavan R , MacFarlane D R . High CO2 absorption by diamino protic ionic liquids using azolide anions[J]. Chem. Commun., 2018, 54(17): 2106-2109.
66 Zhao T , Zhang X , Tu Z , et al . Low-viscous diamino protic ionic liquids with fluorine-substituted phenolic anions for improving CO2 reversible capture[J]. J. Mol. Liq., 2018, 268: 617-624.
67 周作明, 郭冰松, 吕碧洪, 等 . 氨基酸离子液体水溶液吸收及解吸二氧化碳机理[J]. 中国科学: 化学, 2015, 45(7): 747-754.
Zhou Z M , Guo B S , Lyu B H , et al . Absorption/desorption mechanism of carbon dioxide capture into amino acid ionic liquid aqueous solution[J]. Sci. China Chem., 2015, 45(7): 747-754.
68 Li B , Chen Y , Yang Z , et al . Thermodynamic study on carbon dioxide absorption in aqueous solutions of choline-based amino acid ionic liquids[J]. Sep. Purif. Technol., 2019, 214: 128-138.
69 Filippov A , Antzutkin O N , Shah F U . Reactivity of CO2 with aqueous choline-based ionic liquids probed by solid-state NMR spectroscopy[J]. J. Mol. Liq., 2019, 286: 110918.
70 Chen Y , Guo K , Huangpu L . Experiments and modeling of absorption of CO2 by amino-cation and amino-anion dual functionalized ionic liquid with the addition of aqueous medium[J]. J. Chem. Eng. Data, 2017, 62(11): 3732-3743.
71 Jing G , Qian Y , Zhou X , et al . Designing and screening of multi-amino-functionalized ionic liquid solution for CO2 capture by quantum chemical simulation[J]. ACS Sustainable Chem. Eng., 2018, 6(1): 1182-1191.
72 夏裴文, 王强, 张鹏军, 等 . 功能化离子液体的合成及对CO2的吸收[J]. 化学工程, 2019, 47(1): 37-41.
Xia P W , Wang Q , Zhang P J , et al . Synthesis of functional ionic liquid and application in CO2 absorption[J]. Chem. Eng. (China), 2019, 47(1): 37-41.
73 Yamada H . Comparison of solvation effects on CO2 capture with aqueous amine solutions and amine-functionalized ionic liquids[J]. J. Phys. Chem. B, 2016, 120(40): 10563-10568.
74 Li W , Wen S , Shen L , et al . Mechanism and kinetic study of carbon dioxide absorption into a methyldiethanolamine/1-hydroxyethyl-3-methylimidazolium lysine/water system[J]. Energy Fuels, 2018, 32(10): 10813-10821.
75 Wang L , Tian X , Fang C , et al . Analysis of surface thermodynamics for amino acid ionic liquid–1-dimethylamino-2-propanol aqueous blends[J]. J. Chem. Eng. Data, 2019, 64(8): 3661-3667.
76 Huang Y , Cui G , Zhao Y , et al . Reply to the correspondence on “Preorganization and cooperation for highly efficient and reversible capture of low-concentration CO2 by ionic liquids”[J]. Angew. Chem., Int. Ed., 2019, 58(2): 386-389.
77 Simon N M , Zanatta M , dos Santos F P , et al . Carbon dioxide capture by aqueous ionic liquid solutions[J]. ChemSusChem, 2017, 10(24): 4927-4933.
78 Avelar B G M , Morales-Collazo O , Brennecke J F . Effect of water on CO2 capture by aprotic heterocyclic anion (AHA) ionic liquids[J]. ACS Sustainable Chem. Eng., 2019, 7(19): 16858-16869.
79 Wu J , Lv B , Wu X , et al . Aprotic heterocyclic anion-based dual-functionalized ionic liquid solutions for efficient CO2 uptake: quantum chemistry calculation and experimental research[J]. ACS Sustainable Chem. Eng., 2019, 7(7): 7312-7323.
80 Zhang K , Hou Y , Wang Y , et al . Efficient and reversible absorption of CO2 by functional deep eutectic solvents[J]. Energy Fuels, 2018, 32(7): 7727-7733.
81 Cui G , Lv M , Yang D . Efficient CO2 absorption by azolide-based deep eutectic solvents[J]. Chem. Commun., 2019, 55(10): 1426-1429.
82 Cui G , Liu J , Lyu S , et al . Efficient and reversible SO2 absorption by environmentally friendly task-specific deep eutectic solvents of PPZBr + Gly[J]. ACS Sustainable Chem. Eng., 2019, 7(16): 14236-14246.
83 Chen F F , Huang K , Fan J P , et al . Chemical solvent in chemical solvent: a class of hybrid materials for effective capture of CO2 [J]. AIChE J., 2018, 64(2): 632-639.
84 Wu N , Ji X , Xie W , et al . Confinement phenomenon effect on the CO2 absorption working capacity in ionic liquids immobilized into porous solid supports[J]. Langmuir, 2017, 33(42): 11719-11726.
85 Balsamo M , Erto A , Lancia A , et al . Post-combustion CO2 capture: on the potentiality of amino acid ionic liquid as modifying agent of mesoporous solids[J]. Fuel, 2018, 218: 155-161.
86 Uehara Y , Karami D , Mahinpey N . Roles of cation and anion of amino acid anion-functionalized ionic liquids immobilized into a porous support for CO2 capture[J]. Energy Fuels, 2018, 32(4): 5345-5354.
87 Zhang L , Xiao L , Zhang Y , et al . Synthesis of ionic liquid-SBA-15 composite materials and their application for SO2 capture from flue gas[J]. Energy Fuels, 2018, 32(1): 678-687.
88 Li Y , Li L , Yu J . Applications of zeolites in sustainable chemistry[J]. Chem, 2017, 3(6): 928-949.
89 Wu Q , Ma Y , Wang S , et al . 110th anniversary: sustainable synthesis of zeolites: from fundamental research to industrial production[J]. Ind. Eng. Chem. Res., 2019, 58(27): 11653-11658.
90 Kinik F P , Uzun A , Keskin S . Ionic liquid/metal-organic framework composites: from synthesis to applications[J]. ChemSusChem, 2017, 10(14): 2842-2863.
91 Luo Q X , An B W , Ji M , et al . Hybridization of metal-organic frameworks and task-specific ionic liquids: fundamentals and challenges[J]. Materials Chemistry Frontiers, 2018, 2(2): 219-234.
92 Fujie K , Kitagawa H . Ionic liquid transported into metal-organic frameworks[J]. Coord. Chem. Rev., 2016, 307: 382-390.
93 Zeng Y , Zou R , Zhao Y . Covalent organic frameworks for CO2 capture[J]. Adv. Mater., 2016, 28(15): 2855-2873.
94 Sharma A , Malani A , Medhekar N V , et al . CO2 adsorption and separation in covalent organic frameworks with interlayer slipping[J]. CrystEngComm, 2017, 19(46): 6950-6963.
95 Lohse M S , Bein T . Covalent organic frameworks: structures, synthesis, and applications[J]. Adv. Funct. Mater., 2018, 28(33): 1705553.
96 Guan P , Qiu J , Zhao Y , et al . A novel crystalline azine-linked three-dimensional covalent organic framework for CO2 capture and conversion[J]. Chem. Commun., 2019, 55: 12459-12462.
97 Zhang W , Gao E , Li Y , et al . CO2 capture with polyamine-based protic ionic liquid functionalized mesoporous silica[J]. J. CO2 Util., 2019, 34: 606-615.
98 Uehara Y , Karami D , Mahinpey N . CO2 adsorption using amino acid ionic liquid-impregnated mesoporous silica sorbents with different textural properties[J]. Microporous Mesoporous Mater., 2019, 278: 378-386.
99 Cheng J , Li Y , Hu L , et al . CO2 adsorption performance of ionic liquid [P66614][2-Op] loaded onto molecular sieve MCM-41 compared to pure ionic liquid in biohythane/pure CO2 atmospheres[J]. Energy Fuels, 2016, 30(4): 3251-3256.
100 李艳南, 程军, 刘建忠, 等 . 分子筛SBA-15 负载离子液体[P66614][Triz]脱除氢烷气中CO2 [J]. 化工学报, 2018, 69(6): 2526-2532.
Li Y N , Cheng J , Liu J Z , et al . CO2 removal from biohythane by absorption in ionic liquid [P66614][Triz] loaded on molecular sieve SBA-15[J]. CIESC Journal, 2018, 69(6): 2526-2532.
101 Cheng J , Li Y , Hu L , et al . CO2 absorption and diffusion in ionic liquid [P66614][Triz] modified molecular sieves SBA-15 with various pore lengths[J]. Fuel Process. Technol., 2018, 172: 216-224.
102 Hiremath V , Jadhav A H , Lee H , et al . Highly reversible CO2 capture using amino acid functionalized ionic liquids immobilized on mesoporous silica[J]. Chem. Eng. J., 2016, 287: 602-617.
103 Chen C , Feng N , Guo Q , et al . Surface engineering of a chromium metal-organic framework with bifunctional ionic liquids for selective CO2 adsorption: synergistic effect between multiple active sites[J]. J. Colloid Interface Sci., 2018, 521: 91-101.
104 Mohamedali M , Henni A , Ibrahim H . Markedly improved CO2 uptake using imidazolium-based ionic liquids confined into HKUST-1 frameworks[J]. Microporous Mesoporous Mater., 2019, 284: 98-110.
105 Maurya M , Singh J K . Effect of ionic liquid impregnation in highly water-stable metal-organic frameworks, covalent organic frameworks, and carbon-based adsorbents for post-combustion flue gas treatment[J]. Energy Fuels, 2019, 33(4): 3421-3428.
106 Xia X , Hu G , Li W , et al . Understanding reduced CO2 uptake of ionic liquid/metal-organic framework (IL/MOF) composites[J]. ACS Applied Nano Materials, 2019, 2(9): 6022-6029.
107 Xue C , Feng L , Zhang Q , et al . High and fast carbon dioxide capture of hydroxypyridine-based ionogel depending on pore structure of mesoporous silica vesicle in the simulated flue gas[J]. Int. J. Greenhouse Gas Control, 2019, 84: 111-120.
108 Moya C , Alonso-Morales N , Gilarranz M A , et al . Encapsulated ionic liquids for CO2 capture: using 1-butyl-methylimidazolium acetate for quick and reversible CO2 chemical absorption[J]. ChemPhysChem, 2016, 17(23): 3891-3899.
109 Santiago R , Lemus J , Moya C , et al . Encapsulated ionic liquids to enable the practical application of amino acid-based ionic liquids in CO2 capture[J]. ACS Sustainable Chem. Eng., 2018, 6(11): 14178-14187.
110 Moya C , Alonso-Morales N , de Riva J , et al . Encapsulation of ionic liquids with an aprotic heterocyclic anion (AHA-IL) for CO2 capture: preserving the favorable thermodynamics and enhancing the kinetics of absorption[J]. J. Phys. Chem. B, 2018, 122(9): 2616-2626.
[1] 刘丽雪, 张少峰, 赵长伟, 宝乐尔呼, 俞灵, 王军. β-环糊精为水相单体的复合纳滤膜制备及染料截留性能[J]. 化工学报, 2020, 71(2): 889-898.
[2] 蒋瑞, 胡冬冬, 刘涛, 赵玲. 热塑性聚醚酯弹性体硬段含量对其超临界CO 2发泡行为的影响[J]. 化工学报, 2020, 71(2): 871-878.
[3] 高思鸿, 刘堉学, 范怡平, 卢春喜. 新型旋流场-颗粒床耦合分离设备静压分布[J]. 化工学报, 2020, 71(2): 516-525.
[4] 马晓雪, 梁坤豪, 魏杰, 宋宗仁, 肖传佑, 巩璐, 房大维. 醚基高铼酸盐离子液体的催化性能研究[J]. 化工学报, 2020, 71(1): 314-319.
[5] 陆小华, 陈义峰, 董依慧, 吉晓燕, 谢文龙, 吴楠桦, 安蓉, 戴中洋, 李峥. 纳微界面增强CO2吸收及机理分析[J]. 化工学报, 2020, 71(1): 34-42.
[6] 宋思婕,姚加,李浩然. 离子液体汽化焓的测量方法[J]. 化工学报, 2020, 71(1): 26-33.
[7] 李琳, 夏淑倩, 商巧燕, 马沛生. CO2-环烷烃/芳香烃界面张力的测定与估算[J]. 化工学报, 2020, 71(1): 254-264.
[8] 常苗, 刘磊, 阳庆元, 刘大欢, 仲崇立. 水热稳定金属-有机骨架材料用于高效分离SF6/N2混合物的研究[J]. 化工学报, 2020, 71(1): 320-328.
[9] 项小燕, 危依, 裴宝有, 丘荣星, 陈晓燕, 赵朝阳, 罗小燕, 林金清. 碱性离子液体协同配合剂催化葡萄糖异构化制备果糖[J]. 化工学报, 2020, 71(1): 290-296.
[10] 魏颖, 陶明松, 朱耀锋, 张庆国. GNs/[Bmim][BF4]复合材料的制备及其超电容性能[J]. 化工学报, 2020, 71(1): 417-425.
[11] 杨凯, 阮雪华, 代岩, 王佳铭, 贺高红. 氨基MIL-101(Cr)强化CO2分离性能的混合基质膜优化制备[J]. 化工学报, 2020, 71(1): 329-336.
[12] 谭亚龙, 舒高翔, 崔林芳, 章连众. 应用于离子液体体系汽液平衡测定的液相配制、气相分析方法[J]. 化工学报, 2020, 71(1): 225-230.
[13] 王薪薪, 周清, 张晓春, 张志博, 吕兴梅, 张锁江. 离子液体[Mmim][DMP]与DMSO/乙腈二元体系的密度和黏度[J]. 化工学报, 2020, 71(1): 177-191.
[14] 肖俏欣, 林文俊, 李浩然, 王从敏. 含醚阴离子功能化离子液体高效捕集SO2[J]. 化工学报, 2020, 71(1): 361-367.
[15] 桂成敏, 朱瑞松, 张傑, 雷志刚. 离子液体气体干燥技术的研究进展[J]. 化工学报, 2020, 71(1): 92-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹相生, 付昆明, 钱栋, 朱兆亮, 孟雪征. 甲醇为碳源时C/N对反硝化过程中亚硝酸盐积累的影响 [J]. 化工学报, 2010, 61(11): 2939 -2943 .
[2] 张政,谢灼利. 流体-固体两相流的数值模拟 [J]. CIESC Journal, 2001, 52(1): 1 -12 .
[3] 叶代勇;黄洪;傅和青;陈焕钦. 纤维素化学研究进展 [J]. CIESC Journal, 2006, 57(8): 1782 -1791 .
[4] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[5] 郑大庆,HelmutKnapp. 含强缔合氟化氢体系的热力学模型 [J]. CIESC Journal, 1997, 48(1): 28 -34 .
[6] 葛善海,衣宝廉,徐洪峰. 质子交换膜燃料电池水传递模型 [J]. CIESC Journal, 1999, 50(1): 39 -48 .
[7] 郑岚;杨东元;王亚红;陈开勋.

神经二肽N-乙酰天门冬氨酰谷氨酸的合成

[J]. CIESC Journal, 2009, 60(4): 990 -994 .
[8] 刘昌俊, 许根慧. 一碳化工产品及其发展方向 [J]. 化工学报, 2003, 54(4): 524 -530 .
[9] 辛峰,王富民,李绍芬. 曲折因子与多孔介质微观结构的定性关系 [J]. CIESC Journal, 2000, 51(4): 457 -461 .
[10] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .