化工学报 ›› 2020, Vol. 71 ›› Issue (2): 602-613.doi: 10.11949/0438-1157.20191275

• 流体力学与传递现象 • 上一篇    下一篇

补充风对水平管高压密相气力输送影响的模拟研究

周海军(),熊源泉()   

  1. 东南大学能源热转换及其过程测控教育部重点实验室, 江苏, 南京 210096
  • 收稿日期:2019-10-25 修回日期:2019-12-04 出版日期:2020-02-05 发布日期:2019-12-13
  • 通讯作者: 熊源泉 E-mail:zhounavy_0501@163.com;yqxiong@seu.edu.cn
  • 作者简介:周海军(1986—),男,博士研究生,zhounavy_0501@163.com
  • 基金资助:
    国家重点基础研究发展计划项目(2010CB227002);国家高技术研究发展计划项目(2011AA05A201)

Simulation study on influence of supplementary gas on dense-phase pneumatic conveying in horizontal pipe under high pressure

Haijun ZHOU(),Yuanquan XIONG()   

  1. Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, Jiangsu, China
  • Received:2019-10-25 Revised:2019-12-04 Online:2020-02-05 Published:2019-12-13
  • Contact: Yuanquan XIONG E-mail:zhounavy_0501@163.com;yqxiong@seu.edu.cn

摘要:

针对水平管高压密相气力输送数理模型的缺陷与不足,引入Savage径向分布函数修正的颗粒动理学理论、基于Berzi摩擦压应力模型构建的摩擦应力模型以及修正的三段式曳力模型,在欧拉-欧拉方法的基础上建立了一个能同时兼顾水平管高压密相气力输送中稀相流、过渡流以及密相流输送特性的三维非稳态数理模型。并采用该数理模型考察了补充风对水平管高压密相气力输送的影响,模拟结果精准地预测了水平管压降及其随补充风的变化规律,而且其预测的水平管固相体积浓度分布与ECT图也是相吻合的,从而验证了数理模型的可靠性。模拟结果表明:随着补充风的增加,气固两相速度和湍动能以及颗粒拟温度增大,固相体积浓度减小。

关键词: 气力输送, 两相流, 密相, 介尺度, 补充风, 数值模拟

Abstract:

In view of the defects and deficiencies of the existing mathematical model, a new three-dimensional (3D) unsteady mathematical model for dense-phase pneumatic conveying in horizontal pipe under high pressure was established based on the Euler-Euler model. This mathematical model introduced the modified kinetic theory of granular flows by Savage’s radial distribution function, the frictional stress model established on Berzi’s frictional pressure stress and the modified three-zone drag model to expound the conveying characteristics of all of three flow regimes: dilute regime, intermediate regime and dense regime. Meanwhile, this mathematical model was applied to explore the effects of supplementary gas on dense-phase pneumatic conveying in horizontal pipe under high pressure. The simulation results show that the pressure drop of horizontal pipe and its variation with the supplementary gas flow rates are predicted accurately, and the predicted solids volume fraction distribution at the cross section of horizontal pipe also basically agrees with the electrical capacitance tomography (ECT) diagram, which confirm the reliability and applicability of this mathematical model. The simulation results show that as the supplementary wind increases, the gas-solid two-phase velocity and turbulent kinetic energy and particle pseudo-temperature increase, and the solid phase volume concentration decreases.

Key words: pneumatic conveying, two-phase flow, dense-phase, mesoscale, supplementary gas, numerical simulation

中图分类号: 

  • TQ 022

图1

高压密相气力输送试验装置1—高压气瓶;2—缓冲罐;3—流化风流量计;4—充压风流量计;5—补充风流量计;6—储料罐;7—输送管道;8—差压变送器;9—压力传感器;10—可视段;11—温度传感器;12—在线取样器;13—荷重传感器;14—电动调节阀;15—控制柜"

表1

输送试验工况参数"

No.补充风流量,Qs /(m3/h)表观气速,Ug/(m/s)固相质量流量,Ms/(kg/s)进口固相体积浓度,αs,in进口固相平均速度,us,inlet/(m/s)出口气相压力,Pout/MPa
10.404.710.2130.3184.432.91
20.605.620.2060.2865.302.91
30.806.430.1940.2456.092.92
41.007.240.1810.1996.792.93
51.208.100.1680.1847.722.93

表2

内蒙褐煤煤粉的主要物性参数"

自然堆积固相体积浓度,αs,b

全水分,

Mc

密度,ρs/(kg/m3)颗粒平均粒径,ds/μm颗粒刚度,kn/(Pa?m)
0.505.45%1496204.33000

图2

水平管纵截面固相体积浓度分布"

表3

数理模型参数"

αs,maxess?iesw?μwa
0.600.832.0°0.51.0×10-50.51.8×10-6

图3

水平管的网格划分"

表4

不同网格尺寸下模拟预测的水平管压降"

网格划分规格端面格数轴向网格尺寸/mm总网格数/万水平管模拟压降/kPa水平管试验压降/kPa
Mesh A180221.603.844.14
Mesh B2881.546.083.91
Mesh C4201.2580.644.07
Mesh D5761138.244.08

图4

不同网格尺寸下模拟预测的气相速度沿高度方向的分布"

图5

不同补充风下模拟预测的水平管压降与其试验值的对比"

图6

水平管中不同横截面气固两相速度沿高度方向的分布"

图7

水平管横截面固相体积浓度分布云图"

图8

内蒙褐煤煤粉颗粒粒径分布"

图9

不同补充风下模拟预测的固相体积浓度分布云图与ECT图的对比"

图10

不同补充风下模拟预测的水平高压密相气力输送特性参数沿高度方向的分布"

图11

不同补充风下模拟获得的曳力Fsg"

图12

不同补充风下模拟获得的固相摩擦切应力分布云图"

图13

不同补充风下模拟获得的气固两相与壁面间的切应力分布云图"

1 华贲. 低碳时代石油化工产业资源与能源走势[J]. 化工学报, 2013, 64(1): 76-83.
Hua B. Resources and energy trends of petrochemical industry in low carbon era[J]. CIESC Journal, 2013, 64(1): 76-83.
2 Lu P, Yang P J, Zheng X W, et al. Pilot-scale experimental study on phase diagrams of pressurized pneumatic conveying with pulverized coal[J]. Energy & Fuels, 2017, 31(9): 10260-10266.
3 鹿鹏, 姜瑞雪, 张桂臣, 等. 加压气力输送流型与压力脉动Hilbert-Huang变换的关联研究[J]. 中国电机工程学报, 2014, 34(5): 718-723.
Lu P, Jiang R X, Zhang G C, et al. Flow regimes of pressurized pneumatic conveying and association study based on Hilbert-Huang transform[J]. Proceedings of the CSEE, 2014, 34(5): 718-723.
4 朱立平, 彭小敏, 黄飞, 等. 表观气速对密相气力输送流型影响的模拟[J]. 化工学报, 2012, 63(2): 470-478.
Zhu L P, Peng X M, Huang F, et al. Numerical simulation of flow patterns in dense pneumatic conveying at different superficial gas velocities[J]. CIESC Journal, 2012, 63(2): 470-478.
5 Sun S S, Yuan Z L, Peng Z B, et al. Computational investigation of particle flow characteristics in pressurised dense phase pneumatic conveying systems[J]. Powder Technology, 2018, 329: 241-251.
6 谢灼利, 黎明, 张政. 水平管气力输送的数值模拟研究[J]. 高校化学工程学报, 2006, 20(3): 331-337.
Xie Z L, Li M, Zhang Z. Numerical simulation of horizontal pneumatic conveying[J]. Journal of Chemical Engineering of Chinese Universities, 2006, 20(3): 331-337.
7 Pu W H, Zhao C S, Xiong Y Q, et al. Numerical simulation on dense phase pneumatic conveying of pulverized coal in horizontal pipe at high pressure[J]. Chem. Eng. Sci., 2010, 65(8): 2500-2512.
8 蒲文灏, 赵长遂, 熊源泉, 等. 水平管加压密相煤粉气力输送数值模拟[J]. 化工学报, 2008, 59(10): 2601-2607.
Pu W H, Zhao C S, Xiong Y Q, et al. Numerical simulation of dense pneumatic conveying of pulverized coal in horizontal pipe at high pressure[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(10): 2601-2607.
9 Jenkins J T, Savage S B. A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles[J]. J. Fluid Mech., 1983, 130: 187-202.
10 Savage S B, Jeffrey D J. The stress tensor in a granular flow at high shear rates[J]. J. Fluid Mech., 1981, 110: 255-272.
11 Wang Y, Williams K, Jones M, et al. CFD simulation methodology for gas-solid flow in bypass pneumatic conveying—a review[J]. Appl. Therm. Eng., 2017, 125: 185-208.
12 Chialvo S, Sun J, Sundaresan S. Bridging the rheology of granular flows in three regimes[J]. Phys. Rev. E., 2012, 85(2): 021305.
13 Makkawi Y, Ocone R. A model for gas-solid flow in a horizontal duct with a smooth merge of rapid-intermediate-dense flows[J]. Chem. Eng. Sci., 2006, 61(13): 4271-4281.
14 Tardos G I, Mcnamara S, Talu I. Slow and intermediate flow of a frictional bulk powder in the Couette geometry[J]. Powder Technology, 2003, 131(1): 23-39.
15 Vescovi D, di Prisco C, Berzi D. From solid to granular gases: the steady state for granular materials[J]. Int. J. Numer. Anal. Methods Geomech., 2013, 37(17): 2937-2951.
16 陈程, 祁海鹰. EMMS曳力模型及其颗粒团模型的构建和检验[J]. 化工学报, 2014, 65(6): 2003-2012.
Chen C, Qi H Y. Development and validation of cluster and EMMS drag model[J]. CIESC Journal, 2014, 65(6): 2003-2012.
17 Peng C, Lyu M, Wang S N, et al. Effect of fractal gas distributor on the radial distribution of particles in circulating turbulent fluidized bed[J]. Powder Technology, 2018, 326: 443-453.
18 Xu G L, Lu P, Liang C, et al. Effect of powder properties on discharge characteristics of cohesive carbonaceous fuel powders from a top discharge blow tank at high pressure[J]. Chem. Eng. Commun., 2018, 205(11): 1604-1621.
19 沈湘林, 熊源泉. 煤粉加压密相输送实验研究[J]. 中国电机工程学报, 2005, 25(24): 103-107.
Shen X L, Xiong Y Q. Experimental study on dense-phase pneumatic conveying of pulverized coal at high pressures[J]. Proceedings of the CSEE, 2005, 25(24): 103-107.
20 贺春辉, 陈先梅, 倪红亮, 等. 发送罐出料方式对煤粉高压密相气力输送特性的影响[J]. 中国电机工程学报, 2012, 32(23): 32-39.
He C H, Chen X M, Ni H L, et al. Influences of discharge types of blow tank on dense phase pneumatic conveying of pulverized coal at high pressure[J]. Proceedings of the CSEE, 2012, 32(23): 32-39.
21 Savage S B. Analyses of slow high-concentration flows of granular materials[J]. J. Fluid Mech., 1998, 377: 1-26.
22 Lee C H, Huang Z H, Chiew Y M. A three-dimensional continuum model incorporating static and kinetic effects for granular flows with applications to collapse of a two-dimensional granular column[J]. Physics of Fluids, 2015, 27(11): 113303.
23 Srivastava A, Sundaresan S. Analysis of a frictional-kinetic model for gas-particle flow[J]. Powder Technology, 2003, 129(1/2/3): 72-85.
24 Johnson P C, Jackson P R. Frictional-collisional equations of motion for participate flows and their application to chutes[J]. J. Fluid Mech., 1990, 210: 501-535.
25 Berzi D, di Prisco C G, Vescovi D. Constitutive relations for steady, dense granular flows[J]. Phys. Rev. E., 2011, 84(3): 031301.
26 Nikolopoulos A, Nikolopoulos N, Charitos A, et al. High-resolution 3-D full-loop simulation of a CFB carbonator cold model[J]. Chem. Eng. Sci., 2013, 90(10): 137-150.
27 Schneiderbauer S, Aigner A, Pirker S. A comprehensive frictional-kinetic model for gas-particle flows: analysis of fluidized and moving bed regimes[J]. Chem. Eng. Sci., 2012, 80(10): 279-292.
28 Lyu S H, Li X L, Li G H. Effects of momentum transfer on particle dispersions of dense gas-particle two-phase turbulent flows[J]. Adv. Powder Technol., 2014, 25(1): 274-280.
29 Mckeen T, Pugsley T. Simulation and experimental validation of a freely bubbling bed of FCC catalyst[J]. Powder Technology, 2003, 129(1): 139-152.
30 Klinzing G E, Rizk F, Marcus R, et al. Pneumatic conveying of solids: a theoretical and practical approach[J]. Ind. Eng. Chem. Res., 2011, 55(39): 10455-10464.
31 Johnson P C, Jackson R. Frictional-collisional constitutive relations for granular materials, with application to plane shearing[J]. J. Fluid Mech., 1987, 176: 67-93.
32 Geldart D, Ling S J. Dense phase conveying of fine coal at high total pressures[J]. Powder Technology, 1990, 62(3): 243-252.
[1] 王修纲, 吴裕凡, 郭潞阳, 路庆华, 叶晓峰, 曹育才. 聚合釜传热性能的实验研究及数值模拟[J]. 化工学报, 2020, 71(2): 584-593.
[2] 刘稳文, 吕梦芸, 李学艺, 黄璟, 池立勋, 闫锋, 张劲军. 含蜡油凝点判断准则的力学涵义[J]. 化工学报, 2020, 71(2): 566-574.
[3] 刘丹, 成毅, 胡明月, 盛倩云, 周昊. 湿烟气工况下齿形螺旋翅片管束的性能研究[J]. 化工学报, 2020, 71(2): 575-583.
[4] 张亮亮, 付纪文, 罗勇, 孙宝昌, 邹海魁, 初广文, 陈建峰. 面向海洋工程的超重力过程强化技术及应用[J]. 化工学报, 2020, 71(1): 1-15.
[5] 刘磊磊,夏新林,侯凌霄,孙创,陈学. 基于二维渗流方程的微纳孔隙材料渗透率反演求解[J]. 化工学报, 2019, 70(S2): 343-348.
[6] 耿庆庆,李瑞琦,杨茉. Hurst指数在判别火灾轰燃中的应用[J]. 化工学报, 2019, 70(S2): 369-375.
[7] 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137.
[8] 魏琳, 廖梓豪, 蒋方明. PEMFC冷却剂循环条件下冷启动数值模拟[J]. 化工学报, 2019, 70(S2): 146-154.
[9] 李勇, 刘飞, 董海峰, 张香平, 陈靖容, 刘仁材, 金劭, 吴战鹏, 王晓东. 微颗粒实时在线监测仪在固液体系测量中的应用[J]. 化工学报, 2019, 70(S2): 181-190.
[10] 王宁, 张晨宇, 徐洪涛, 张剑飞. 填充多级相变材料的套管式储热器性能研究[J]. 化工学报, 2019, 70(S2): 191-200.
[11] 贾文华, 田茂诚, 张冠敏, 魏民. 含不凝气体蒸汽波节管内凝结特性研究[J]. 化工学报, 2019, 70(S2): 201-207.
[12] 徐阳, 郑章靖, 李明佳. 管壳式相变储热器性能快速预测研究[J]. 化工学报, 2019, 70(S2): 237-243.
[13] 蒋二辉, 张东伟, 周俊杰, 沈超, 魏新利. 不同结构下两弯头脉动热管的数值模拟[J]. 化工学报, 2019, 70(S2): 244-249.
[14] 董非, 苑天林, 武志伟, 倪捷. 基于RPI模型的内燃机冷却水腔内数值模拟研究[J]. 化工学报, 2019, 70(S2): 250-257.
[15] 王甜蜜,唐桂华. Janus三角纳米片和“三明治”三角纳米片消光特性的数值研究[J]. 化工学报, 2019, 70(S2): 336-342.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘海燕, 于建宁, 鲍晓军. 能源工业中的技术预见[J]. 化工学报, 2006, 57(8): 1817 -1826 .
[2] 邓先和,邓颂九. 管间支撑物的结构对横纹槽管管束传热强化性能的影响 [J]. CIESC Journal, 1992, 43(1): 62 -68 .
[3] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[4] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[5] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[6] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .
[7] 曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进展[J]. 化工学报, 2013, 64(3): 788 -800 .
[8] 陈小艳, 周骛, 蔡小舒, 黄燕, 袁益超. 大型喷雾粒径分布的图像法测量[J]. 化工学报, 2014, 65(2): 480 -487 .
[9] 吴美容, 张瑞, 周俊, 谢欣欣, 雍晓雨, 闫志英, 葛明民, 郑涛. 温度对产甲烷菌代谢途径和优势菌群结构的影响[J]. 化工学报, 2014, 65(5): 1602 -1606 .
[10] 赵安, 韩云峰, 翟路生, 陈春原, 金宁德. 气液两相流电容传感器相浓度测量特性[J]. 化工学报, 2015, 66(7): 2402 -2410 .