化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 212-219.doi: 10.11949/0438-1157.20191274

• 流体力学与传递现象 • 上一篇    下一篇

机载冷源参数对蒸发循环系统性能的影响

王瑞琪1(),高赞军1,2,杨华1,胡文超1,2,詹宏波1,2()   

  1. 1.中国航空工业金城南京机电液压工程研究中心,江苏 南京 211106
    2.航空机电系统综合航空科技重点实验室,江苏 南京 211106
  • 收稿日期:2019-10-25 修回日期:2020-01-04 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 詹宏波 E-mail:wrq5809@163.com;zhanhongbono1@126.com
  • 作者简介:王瑞琪(1992—),女,硕士,助理工程师,wrq5809@163.com

Influence of airborne cold source parameters on evaporative cycle system performance

Ruiqi WANG1(),Zanjun GAO1,2,Hua YANG1,Wenchao HU1,2,Hongbo ZHAN1,2()   

  1. 1.AVIC Jincheng Nanjing Engineering Institute of Aircraft Systems, Nanjing 211106, Jiangsu, China
    2.Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration, Nanjing 211106, Jiangsu, China
  • Received:2019-10-25 Revised:2020-01-04 Online:2020-04-25 Published:2020-05-22
  • Contact: Hongbo ZHAN E-mail:wrq5809@163.com;zhanhongbono1@126.com

摘要:

为了深入研究机载蒸发循环系统的工作特性及为搭建仿真计算模型做准备,基于试验室已有设备和条件,以一台新型微通道换热器作为研究对象,以R134a为工质,通过控制压缩机转速和电子膨胀阀开度一定,分别调节冷源温度和流量,考察冷源温度和流量对压缩机入口过热度、热源出口温度和制冷量的影响,并基于试验数据搭建了针对该蒸发器的仿真计算模型。试验结果表明在试验工况下,冷源防冻液入口温度对系统性能的影响明显,随冷源入口温度升高,压缩机入口过热度逐渐降低、热源出口温度明显升高,但冷源流量对系统性能的影响不显著。基于试验数据,建立了蒸发器仿真计算模型,将该模型应用于蒸发循环系统模型中,对比试验数据和仿真计算数据,可知,该蒸发器仿真计算模型准确可靠,可用于针对该蒸发器的性能仿真计算。

关键词: 机载系统, 蒸发循环制冷, 蒸发, 传热, 微通道, 冷源参数, 仿真

Abstract:

In order to study the characteristics of airborne evaporation cycle system, this paper is based on the existing equipment and conditions of laboratory, the research object is the airborne evaporation cycle system and the working medium is R134a. By controlling the speed of the compressor and the opening degree of the electronic expansion valve, the temperature and flow rate of the cold source are adjusted respectively. In this way, we can investigate the influence of the temperature and flow rate of the cold source on the compressor inlet refrigerant superheat, outlet temperature of the heat source and refrigerating capacity. The results show that under the test conditions in this paper, the effect of cold source antifreeze inlet temperature on system performance is obvious. As the cold source inlet temperature increases, the compressor superheat decreases gradually and the heat source outlet temperature increases obviously. However, the influence of cold source flow rate on system performance is not significant. Based on experimental data, a simulation model of evaporator is established. Applying the model to the evaporation cycle system model, comparing the experimental data with the simulation data, it can be seen that the simulation model of the evaporator is accurate and reliable, and can be used to simulate the performance of the evaporator.

Key words: airborne system, vapor cycle cooling, evaporation, heat transfer, microchannels, cold source parameters, simulation

中图分类号: 

  • V 245.3

图1

半圆形通道蚀刻板片模型"

图2

蒸发循环试验系统示意图"

图3

蒸发器制冷剂侧换热量与防冻液测换热量的比较"

图4

压缩机入口过热度随冷源入口温度的变化"

图6

制冷量随冷源入口温度的变化"

图7

压缩机入口过热度随冷源流量的变化"

图5

热源出口温度随冷源入口温度的变化"

图8

热源出口温度随冷源流量的变化"

图9

制冷量随冷源流量的变化"

图10

液冷蒸发器三维模型"

图11

蒸发器模型"

表1

仿真结果与比较"

序号参数工况1工况2工况3
试验值仿真值相对误差试验值仿真值相对误差试验值仿真值相对误差
1压缩机耗功/kW10.911.11.8%10.110.97.9%10.911.22.8%
2制冷剂流量/(kg·h-1)747744-0.4%7587800.3%972108011.1%
3蒸发器防冻液流量/(kg·h-1)432045395.1%4203480714.4%4243470510.9%
4蒸发器供液温度/℃30.134.915.9%45.846.00.4%48.244.2-8.3%
5制冷量/kW25.424.1-5.1%25.524.3-4.7%15.616.13.2%
1 刘铭. 国外飞机综合环境控制系统航空科学技术[J]. 航空科学技术, 2004, (2): 28-31.
Liu M. Aircraft integrated environmental control system [J]. Aeronautical Science and Technology, 2004, (2): 28-31.
2 Jonqueres M. Air cycle environmental control system with vapor cycle system: US005918472A [P]. 1999-07-06.
3 Sprouse J G. F-22 environmental control/thermal management system (ECS/TMS) design optimization for reliability and intergrity—a case study [R]. SAE-961339, 1996.
4 Ashford R, Brown S. F-22 environmental control/thermal management system (ECS/TMS) flight test program-downloadable constants, an innovative approach [R]. SAE-2000-01-2265, 2000.
5 Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI [J]. IEEE Electron Device Letters, 1981, 2(5): 126-129.
6 唐有才, 王占勇, 孙金立. 现代军用飞机环控系统探讨[J]. 航空科学技术, 2002, (4): 35-37.
Tang Y C, Wang Z Y, Sun J L. Discussion on environmental control system of modern military aircraft [J]. Aeronautical Science and Technology, 2002, (4): 35-37.
7 李武奇, 唐伯清, 张均勇. 蒸汽压缩式制冷系统在航空中的应用[J]. 飞机设计, 2008, (2): 75-78.
Li W Q, Tang B Q, Zhang J Y. Application of the steam compression refrigeration system in aviation [J]. Aircraft Design, 2008, (2): 75-78.
8 孙超. 机载蒸发循环仿真研究[D]. 南京: 南京航空航天大学, 2011.
Sun C. Simulation study of airborne evaporation cycle [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.
9 曹辉, 赵竞全. 机载蒸发制冷循环的稳态仿真[J]. 计算机仿真, 2007, 24(4): 40-42.
Cao H, Zhao J Q. Steady-state simulation of vapor cycle system for aircraft environmental control system [J]. Computer Simulation, 2007, 24(4): 40-42.
10 南国鹏, 王浚. 基于流程图的飞机液冷系统组态建模及仿真[J]. 系统仿真学报, 2004, 16(4): 714-716.
Nan G P, Wang J. Configuration modeling and simulation of aircraft liquid cooling system based on flow chart [J]. Journal of System Simulation, 2004, 16 (4): 714-716.
11 郑志皋, 陶乐仁, 陶宏, 等. 小型变制冷剂流量制冷循环实验台设计[J]. 流体机械, 2010, 38(9): 69-72.
Zheng Z G, Tao L R, Tao H, et al. Design of small-sized VRF refrigeration loop experiment device [J]. Fluid Machinery, 2010, 38(9): 69-72.
12 韩磊, 陶乐仁, 郑志皋, 等. 变频空调制冷系统流量调节性能分析和实验研究[J]. 低温与超导, 2010, 38(2): 39-42.
Han L, Tao L R, Zheng Z G, et al. Performance analysis and experimental study for refrigerant flux adjusting in inverter-aided air conditioning system [J]. Cryogenics and Superconductivity, 2010, 38(2): 39-42.
13 陶宏, 陶乐仁, 郑志皋, 等. 变制冷剂流量制冷循环性能与气液两相流流型的研究[J]. 上海理工大学学报, 2009, 31(6): 521-524.
Tao H, Tao L R, Zheng Z G, et al. Experimental researches on relationship between the performance of VRF refrigeration loop and vapor-liquid two-phases flow pattern [J]. Journal of University of Shanghai for Science and Technology, 2009, 31(6): 521-524.
14 Wang H S, Rose J W. A theory of film condensation in horizontal noncircular section microchannels [J]. Journal of Heat Transfer, 2005, 127(10): 1096-1105.
15 陈永东, 于改革, 吴晓红. 新型扩散焊紧凑式换热器[J]. 压力容器, 2016, 5(8): 46-55.
Chen Y D, Yu G G, Wu X H. New type of diffusion bonding compact heat exchangers [J]. Pressure Vessel Technology, 2016, 5(8): 46-55.
16 辛菲, 李磊, 徐向阳, 等. 印刷电路板高压换热器加工工艺研究[C]//第十四届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室2015年度学术年会.2015.
Xin F, Li L, Xu X Y,et al. Research on the processing technology of printed circuit board high pressure heat exchanger [C]// The 14th National Reactor Thermal Fluid Academic Conference and 2015 Annual Academic Conference of China Nuclear Reactor Thermal Hydraulic Technology Key Laboratory.2015.
17 孟晖. 多孔扁管冷凝器结构设计及性能试验[D]. 南京: 南京航空航天大学, 2011.
Meng H. Structural design and performance test of porous flat tube condenser [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.
18 余建祖. 换热器原理与设计[M]. 北京: 北京航空航天大学出版社, 2006: 265.
Yu J Z. Heat Exchanger Principle and Design [M]. Beijing: Beihang University Press, 2006: 265.
19 李彦良. 多用途蒸发循环系统实验台的研制[D]. 南京: 南京航空航天大学, 2012.
Li Y L. Development of a multi-purpose evaporation cycle system experimental platform [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012.
20 闫旭东, 宋保银, 赵枚, 等. 机载蒸发循环系统两相流换热特性实验研究[J]. 制冷与空调, 2008, 22(6): 7-11.
Yan X D, Song B Y, Zhao M, et al. Experimental investigation on the heat transfer characteristic of two-phase flow in an onboard vapor cycle system [J]. Refrigeration & Air Conditioning, 2008, 22(6): 7-11.
21 寿荣中, 何慧姗. 飞行器环境控制[M]. 北京: 北京航空航天大学出版社, 2004: 176-183.
Shou R Z, He H S. Aircraft Environmental Control [M]. Beijing: Beihang University Press, 2004: 176-183.
22 杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 1998: 172-178.
Yang S M, Tao W Q. Heat Transfer [M]. Beijing: Higher Education Press, 1998: 172-178.
23 吴业正, 韩宝琦. 制冷原理及设备[M]. 第2版,西安: 西安交通大学出版社, 1997: 387
Wu Y Z, Han B Q. Refrigeration Principle and Equipment [M]. 2nd ed. Xi an: Xi an Jiaotong University Press, 1997: 387
24 韩宝琦. 制冷空调原理及应用[M]. 第2版. 北京: 机械工业出版社, 2003: 537.
Han B Q. Principle and Application of Refrigeration and Air Conditioning [M]. 2nd ed. Beijing: China Machine Press, 2003: 537.
[1] 刘子初, 全贞花, 赵耀华, 靖赫然, 姚孟良, 刘新. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128.
[2] 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157.
[3] 孙苏芮, 王德昌, 张金翠, 刘振, 李延辉. 膜蓄能器放能过程的传热传质特性分析[J]. 化工学报, 2020, 71(S1): 158-165.
[4] 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171.
[5] 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186.
[6] 罗坤, 毛晓东, 庞丽萍. 新型直升机热泵空调系统驾驶舱热控性能[J]. 化工学报, 2020, 71(S1): 187-193.
[7] 陈玮玮, 方贤德, 鹿世化, 林福建, 张烨. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211.
[8] 常健佩, 黄翔, 安苗苗, 李朝阳. 蒸发冷却冷水机组的原理、性能与适用性分析[J]. 化工学报, 2020, 71(S1): 236-244.
[9] 郭晓雨, 田喆, 牛纪德, 祝捷. 基于分时电价的区域管网系统储能应用研究[J]. 化工学报, 2020, 71(S1): 293-299.
[10] 齐玢, 段希希, 阿嵘, 江泓升. 载人航天器环热控一体化仿真分析[J]. 化工学报, 2020, 71(S1): 300-306.
[11] 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37.
[12] 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321.
[13] 张晨宇, 王宁, 徐洪涛, 张剑飞, 曹萌. 基于相变材料的太阳能PV/T系统性能[J]. 化工学报, 2020, 71(S1): 361-367.
[14] 杜伯尧, 全贞花, 侯隆澍, 赵耀华, 任海波. 新型光伏直膨式太阳能/空气能多能互补热泵性能[J]. 化工学报, 2020, 71(S1): 368-374.
[15] 郭良, 李恒, 庞丽萍, 毛晓东, 赵竞全, 杨晓东. 高速运载器发电/制冷联合系统稳态性能[J]. 化工学报, 2020, 71(S1): 391-396.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .