化工学报 ›› 2020, Vol. 71 ›› Issue (1): 68-80.doi: 10.11949/0438-1157.20191225

• 综述与专论 • 上一篇    下一篇

生物矿化及仿生矿化中的信息传递和转化

潘海华1,3(),唐睿康2,3()   

  1. 1. 浙江大学求是高等研究院,浙江 杭州 310027
    2. 浙江大学化学系,浙江 杭州 310027
    3. 浙江大学生物物质与信息调控研究中心,浙江 杭州 310027
  • 收稿日期:2019-10-23 修回日期:2019-10-29 出版日期:2020-01-05 发布日期:2019-10-31
  • 通讯作者: 唐睿康 E-mail:panhh@ zju.edu.cn;rtang@zju.edu.cn
  • 作者简介:潘海华(1975—),男,博士,副教授,panhh@ zju.edu.cn
  • 基金资助:
    国家自然科学基金项目(21771160);浙江省自然科学基金项目(LY17B010001);中央高校基本科研业务费项目(2016QN81020)

Information transfer and transformation in bio/biomimetic-mineralization

Haihua PAN1,3(),Ruikang TANG2,3()   

  1. 1. Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, Zhejiang, China
    2. Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
    3. Centre for Biomaterials and Biopathways, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • Received:2019-10-23 Revised:2019-10-29 Online:2020-01-05 Published:2019-10-31
  • Contact: Ruikang TANG E-mail:panhh@ zju.edu.cn;rtang@zju.edu.cn

摘要:

牙齿、骨骼、贝壳等生物矿物具有多级有序的结构和优异的力学性能,是生物矿化过程调控下的矿化结晶产物。生物矿化中的矿物与生物有机基质之间的界面分子识别和结晶调控策略为深入理解化学工程中的“信息传递和转化”范式提供了良好的学习素材。以生物矿化典型无机矿物磷酸钙和碳酸钙体系为例,从生物矿物-溶液界面结构、生物分子与矿物晶面的分子识别、矿物结晶调控三个层面综述了生物矿化的化学调控原理,并从信息传递和转化的化学工程范式出发,分析了生物矿化中分子工程和结晶调控策略。绿色高效的生物矿化过程调控策略有望应用于未来化学工程以解决目前面临的需求倍增和资源短缺的全球性问题。

关键词: 生物模板, 结晶, 分子模拟, 生物矿化, 界面, 纳米结构

Abstract:

Biominerals, such as teeth, bones and shells, have multi-level ordered structure and excellent mechanical properties, and are the crystallization products of mineralization under the control of biomineralization process. The strategies for the control of crystallization in biomineralization would be good examples for a better understanding of the process control and the molecular engineering in chemical engineering. Taking the bio/biomimetic-mineralization of calcium phosphate and calcium carbonate systems as an example, the fundamental principles of biomineralization, such as biominerals/solution interface, the molecular recognitions between biominerals and biomatrix, the advanced molecular control of crystallization and biomimetic fabrications of biominerals-liked hybrid materials are reviewed and discussed in view of the paradigm of“the information transfer and transformation”in chemical engineering, which would be of great helpful for the future development of chemical engineering for solving the global problems of the exponential increased demand in water, energy and commodities with limited resources by using the green and high efficiency biomineralization technology.

Key words: biotemplating, crystallization, molecular simulation, biomineralization, interface, nanostructure

中图分类号: 

  • TQ 132.3

图1

HAP (100) 界面水结构[8]"

图2

方解石 {104} 界面水吸附位点(a) FM-AFM实验结果[14]; (b) XRR实验结果[13];(c) MD分子模拟结果[15]"

图3

矿物晶体界面水结构与晶体结构的对比(a) HAP (001)晶面; (b) 方解石{104}晶面"

图4

柠檬酸在HAP (100)晶面的吸附位点[26](a) AFM高度图; (b) 吸附位点示意图"

图5

SAM膜与方解石{012}面的结构匹配关系的3D模型(不同视角观察)[44]"

图6

D-和L-Asp在DCPD台阶([101] step A 和 step B)的吸附自由能曲线(a);Asp在台阶上的稳定吸附构型(b) [12]"

1 Poliakoff M, Licence P. Sustainable technology: green chemistry[J]. Nature, 2007, 450(7171): 810-812.
2 Lowenstam H, Weiner S. On Biomineralization[M]. USA: Oxford University Press, 1989: 1-49.
3 金涌, 程易, 颜彬航. 化学反应工程的前世、今生与未来[J].化工学报, 2013, 64(1): 34-43.
Jin Y, Cheng Y, Yan B H. Past, present and future of chemical reaction engineering[J]. CIESC Journal, 2013, 64(1): 34-43.
4 胡英, 刘洪来. 分子工程和化学工程[J]. 化学进展, 1995, 7(3): 235-249.
Hu Y, Liu H L. Molecular engineering and chemical engineering[J]. Prog. Chem., 1995, 7(3): 235-249.
5 Park C, Fenter P, Zhang Z, et al. Structure of the fluorapatite (100)-water interface by high-resolution X-ray reflectivity[J]. Am. Mineral., 2004, 89(11/12): 1647-1654.
6 Pareek A, Torrelles X, Angermund K, et al. Structure of interfacial water on fluorapatite (100) surface[J]. Langmuir, 2008, 24(6): 2459-2464.
7 Wilson E E, Awonusi A, Morris M D, et al. Highly ordered interstitial water observed in bone by nuclear magnetic resonance[J]. J. Bone Miner. Res., 2005, 20(4): 625-634.
8 Pan H, Tao J, Wu T, et al. Molecular simulation of water behaviors on crystal faces of hydroxyapatite[J]. Front. Chem. China, 2007, 2(2): 156-163.
9 Arsic J, Kaminski D, Poodt P, et al. Liquid ordering at the Brushite-{010}-water interface[J]. Phys. Rev. B, 2004, 69(24): 1-4.
10 Chu Y S, Lister T E, Cullen W G, et al. Commensurate water monolayer at the RuO2 (110) /water interface[J]. Phys. Rev. Lett., 2001, 86(15): 3364-3367.
11 Arsic J, Kaminski D M, Radenovic N, et al. Thickness-dependent ordering of water layers at the NaCl(100) surface[J]. J. Chem. Phys., 2004, 120(20): 9720-9724.
12 Jiang W, Pan H, Zhang Z, et al. Switchable chiral selection of aspartic acids by dynamic states of brushite[J]. J. Am. Chem. Soc., 2017, 139(25): 8562-8569.
13 Heberling F, Trainor T P, Lützenkirchen J, et al. Structure and reactivity of the calcite-water interface[J]. J. Colloid Interface Sci., 2011, 354(2): 843-857.
14 Imada H, Kimura K, Onishi H. Water and 2-propanol structured on calcite (104) probed by frequency-modulation atomic force microscopy[J]. Langmuir, 2013, 29(34): 10744-10751.
15 Fenter P, Kerisit S, Raiteri P, et al. Is the calcite-water interface understood? Direct comparisons of molecular dynamics simulations with specular X-ray reflectivity data[J]. J. Phys. Chem. C, 2013, 117(10): 5028-5042.
16 Wang Y, Von Euw S, Fernandes F M, et al. Water-mediated structuring of bone apatite[J]. Nat. Mater., 2013, 12(12): 1144-1153.
17 Drouet C, Aufray M, Rollin-Martinet S, et al. Nanocrystalline apatites: the fundamental role of water[J]. Am. Mineral., 2018, 103(4): 550-564.
18 Abrams C, Bussi G. Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration[J]. Entropy, 2014, 16(1): 163-199.
19 Tracey J, Miyazawa K, Spijker P, et al. Understanding 2D atomic resolution imaging of the calcite surface in water by frequency modulation atomic force microscopy[J]. Nanotechnology, 2016, 27(41): 415709.
20 Zhang Z, Wu T, Wang Q, et al. Impact of interfacial high-density water layer on accurate estimation of adsorption free energy by Jarzynski s equality[J]. J. Chem. Phys., 2014, 140(3): 034706.
21 Dove P M, Czank C A. Crystal chemical controls on the dissolution kinetics of the isostructural sulfates: celestite, anglesite, and barite[J]. Geochim. Cosmochim. Acta, 1995, 59(10): 1907-1915.
22 Piana S, Jones F, Gale J D. Assisted desolvation as a key kinetic step for crystal growth[J]. J. Am. Chem. Soc., 2006, 128(41): 13568-13574.
23 Pan H, Tao J, Xu X, Tang R. Adsorption processes of Gly and Glu amino acids on hydroxyapatite surfaces at the atomic level[J]. Langmuir, 2007, 23(17): 8972-8981.
24 Zhang Z, Pan H, Tang R. Molecular dynamics simulations of the adsorption of amino acids on the hydroxyapatite {100} -water interface[J]. Front. Mater. Sci. China, 2008, 2(3): 239-245.
25 Hu Y Y, Rawal A, Schmidt-Rohr K. Strongly bound citrate stabilizes the apatite nanocrystals in bone[J]. Proc. Natl. Acad. Sci. U. S. A., 2010, 107(52): 22425-22429.
26 Jiang W, Pan H, Cai Y, et al. Atomic force microscopy reveals hydroxyapatite-citrate interfacial structure at the atomic level[J]. Langmuir, 2008, 24(21): 12446-12451.
27 Jiang W, Chu X, Wang B, et al. Biomimetically triggered inorganic crystal transformation by biomolecules: a new understanding of biomineralization[J]. J. Phys. Chem. B, 2009, 113(31): 10838-10844.
28 Gajjeraman S, Narayanan K, Hao J, et al. Matrix macromolecules in hard tissues control the nucleation and hierarchical assembly of hydroxyapatite[J]. J. Biol. Chem., 2007, 282(2): 1193-1204.
29 Weiner S. Biomineralization: a structural perspective[J]. J. Struct. Biol., 2008, 163(3): 229-234.
30 Beniash E, Simmer J P, Margolis H C. The effect of recombinant mouse amelogenins on the formation and organization of hydroxyapatite crystals in vitro[J]. J. Struct. Biol., 2005, 149(2): 182-190.
31 Le Norcy E, Kwak S Y, Wiedemann-Bidlack F B, et al. Potential role of the amelogenin N-terminus in the regulation of calcium phosphate formation in vitro[J]. Cells Tissues Organs, 2011, 194(2/3/4): 188-193.
32 Tao J, Shin Y, Jayasinha R, et al. The energetic basis for hydroxyapatite mineralization by amelogenin variants provides insights into the origin of amelogenesis imperfecta[J]. Proc. Natl. Acad. Sci. U. S. A., 2019, 116(28): 13867-13872.
33 Fang P A, Conway J F, Margolis H C, et al. Hierarchical self-assembly of amelogenin and the regulation of biomineralization at the nanoscale[J]. Proc. Natl. Acad. Sci. U. S. A., 2011, 108(34): 14097-14102.
34 Du C, Falini G, Fermani S, et al. Supramolecular assembly of amelogenin nanospheres into birefringent microribbons[J]. Science, 2005, 307(5714): 1450-1454.
35 Shaw W J, Campbell A A, Paine M L, et al. The COOH terminus of the amelogenin, LRAP, is oriented next to the hydroxyapatite surface[J]. J. Biol. Chem., 2004, 279(39): 40263-40266.
36 Moradian-Oldak J, Bouropoulos N, Wang L, et al. Analysis of self-assembly and apatite binding properties of amelogenin proteins lacking the hydrophilic C-terminal[J]. Matrix Biol., 2002, 21(2): 197-205.
37 Chen X, Wang Q, Shen J, et al. Adsorption of leucine-rich amelogenin protein on hydroxyapatite (001) surface through —COO— claws[J]. J. Phys. Chem. C, 2007, 111(3): 1284-1290.
38 Salazar V S, Gamer L W, Rosen V. BMP signalling in skeletal development, disease and repair[J]. Nat. Rev. Endocrinol., 2016, 12(4): 203-221.
39 Dong X, Wang Q, Wu T, Pan H. Understanding adsorption-desorption dynamics of BMP-2 on hydroxyapatite (001) surface[J]. Biophys. J., 2007, 93(3): 750-759.
40 Shen J W, Wu T, Wang Q, et al. Molecular simulation of protein adsorption and desorption on hydroxyapatite surfaces[J]. Biomaterials, 2008, 29(5): 513-532.
41 Mann S, Hannington J P, Williams R J P. Phospholipid vesicles as a model system for biomineralization[J]. Nature, 1986, 324(6097): 565-567.
42 Fricke M, Volkmer D. Crystallization of calcium carbonate beneath insoluble monolayers: suitable models of mineral-matrix interactions in biomineralization? [J]. Top. Curr. Chem., 2007, 270: 1-41.
43 Aizenberg J, Black A J, Whitesides G M. Oriented growth of calcite controlled by self-assembled monolayers of functionalized alkanethiols supported on gold and silver[J]. J. Am. Chem. Soc., 1999, 121(18): 4500-4509.
44 Travaille A M, Kaptijn L, Verwer P, et al. Highly oriented self-assembled monolayers as templates for epitaxial calcite growth[J]. J. Am. Chem. Soc., 2003, 125(38): 11571-11577.
45 Hartgerink J D, Beniash E, Stupp S I. Self-assembly and mineralization of peptide-amphiphile nanofibers[J]. Science, 2001, 294(5547): 1684-1688.
46 Spoerke E D, Anthony S G, Stupp S I. Enzyme directed templating of artificial bone mineral[J]. Adv. Mater., 2009, 21(4): 425-430.
47 Kim Y Y, Ganesan K, Yang P, et al. An artificial biomineral formed by incorporation of copolymer micelles in calcite crystals[J]. Nat. Mater., 2011, 10(11): 890-896.
48 Cho K R, Kim Y Y, Yang P, et al. Direct observation of mineral-organic composite formation reveals occlusion mechanism[J]. Nat. Commun., 2016, 7: 10187.
49 Loo R W, Goh M C. Potassium ion mediated collagen microfibril assembly on mica[J]. Langmuir, 2008, 24(23): 13276-13278.
50 Kang S, Li H, Huynh T, et al. Molecular mechanism of surface-assisted epitaxial self-assembly of amyloid-like peptides[J]. ACS Nano, 2012, 6(10): 9276-9282.
51 Chen J, Zhu E, Liu J, et al. Building two-dimensional materials one row at a time: avoiding the nucleation barrier[J]. Science, 2018, 362(6419): 1135-1139.
52 Orme C, Noy A, Wierzbicki A, et al. Formation of chiral morphologies through selective binding of amino acids to calcite surface steps[J]. Nature, 2001, 411(6839): 775-779.
53 Wu Y J, Tsai T W T, Chan J C C. Asymmetric crystal morphology of apatite induced by the chirality of dicarboxylate additives[J]. Cryst. Growth Des., 2012, 12(2): 547-549.
54 Jiang W, Pacella M S, Athanasiadou D, et al. Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate[J]. Nat. Commun., 2017, 8(1): 15066.
55 De Yoreo J J, Gilbert P U P A, Sommerdijk N A J M, et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments[J]. Science, 2015, 349(6247): aaa6760.
56 De Yoreo J J, Vekilov P G. Principles of crystal nucleation and growth[J]. Rev. Mineral. Geochemistry, 2003, 54(1): 57-93.
57 Hu Q, Nielsen M H, Freeman C L, et al. The thermodynamics of calcite nucleation at organic interfaces: classical vs. non-classical pathways[J]. Faraday Discuss., 2012, 159: 509-523.
58 Wang B, Liu P, Liu Z, et al. Biomimetic construction of cellular shell by adjusting the interfacial energy[J]. Biotechnol. Bioeng., 2014, 111(2): 386-395.
59 Jiang S, Chen Y, Pan H, et al. Faster nucleation at lower pH: amorphous phase mediated nucleation kinetics[J]. Phys. Chem. Chem. Phys., 2013, 15(30): 12530-12533.
60 Jiang S, Pan H, Chen Y, et al. Amorphous calcium phosphate phase-mediated crystal nucleation kinetics and pathway[J]. Faraday Discuss., 2015, 179: 451-461.
61 Wang Y N, Jiang S, Pan H, et al. Less is more: silicate in the crystallization of hydroxyapatite in simulated body fluids[J]. CrystEngComm, 2016, 18(3): 379-383.
62 Chen Y, Gu W, Pan H, et al. Stabilizing amorphous calcium phosphate phase by citrate adsorption[J]. CrystEngComm, 2014, 16(10): 1864-1867.
63 Jiang S, Jin W, Wang Y N, et al. Effect of the aggregation state of amorphous calcium phosphate on hydroxyapatite nucleation kinetics[J]. RSC Adv., 2017, 7(41): 25497-25503.
64 Ding H, Pan H, Xu X, et al. Toward a detailed understanding of magnesium ions on hydroxyapatite crystallization inhibition[J]. Cryst. Growth Des., 2014, 14(2): 763-769.
65 Jin W, Liu Z, Wu Y, et al. Synergic effect of Sr2+ and Mg2+ on the stabilization of amorphous calcium phosphate[J]. Cryst. Growth Des., 2018, 18: 6054-6060.
66 Lupulescu A I, Rimer J D. In situ imaging of silicalite-1 surface growth reveals the mechanism of crystallization[J]. Science, 2014, 344(6185): 729-732.
67 Teng H H, Dove P M, Orme C A, et al. Thermodynamics of calcite growth: baseline for understanding biomineral formation[J]. Science, 1998, 282(5389): 724-727.
68 Piana S, Jones F, Gale J D. Aspartic acid as a crystal growth catalyst[J]. CrystEngComm, 2007, 9(12): 1187-1191.
69 Jiang W, Pan H, Tao J, et al. Dual roles of borax in kinetics of calcium sulfate dihydrate formation[J]. Langmuir, 2007, 23(9): 5070-5076.
70 Baumgartner J, Dey A, Bomans P H H, et al. Nucleation and growth of magnetite from solution[J]. Nat. Mater., 2013, 12(4): 310-314.
71 Liu Z, Pan H, Zhu G, et al. Realignment of nanocrystal aggregates into single crystals as a result of inherent surface stress[J]. Angew. Chem. Int. Ed., 2016, 55(41): 12836-12840.
72 Banfield J F, Welch S A, Zhang H, et al. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products[J]. Science, 2000, 289(5480): 751-754.
73 Li D, Nielsen M H, Lee J R I, et al. Direction-specific interactions control crystal growth by oriented attachment[J]. Science, 2012, 336(6084): 1014-1018.
74 Tao J, Pan H, Zeng Y, et al. Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles[J]. J. Phys. Chem. B, 2007, 111(47): 13410-13418.
75 Zhu G, Yao S, Zhai H, et al. Evolution from classical to non-classical aggregation-based crystal growth of calcite by organic additive control[J]. Langmuir, 2016, 32(35): 8999-9004.
76 Wang L, Guan X, Yin H, et al. Mimicking the self-organized microstructure of tooth enamel[J]. J. Phys. Chem. C, 2008, 112(15): 5892-5899.
77 Yu H P, Zhu Y J, Lu B Q. Dental enamel-mimetic large-sized multi-scale ordered architecture built by a well controlled bottom-up strategy[J]. Chem. Eng. J., 2019, 360: 1633-1645.
78 Fan Y, Sun Z, Moradian-Oldak J. Controlled remineralization of enamel in the presence of amelogenin and fluoride[J]. Biomaterials, 2009, 30(4): 478-483.
79 Ruan Q, Zhang Y, Yang X, et al. An amelogenin-chitosan matrix promotes assembly of an enamel-like layer with a dense interface[J]. Acta Biomater., 2013, 9(7): 7289-7297.
80 Li L, Mao C, Wang J, et al. Bio-inspired enamel repair via glu-directed assembly of apatite nanoparticles: an approach to biomaterials with optimal characteristics[J]. Adv. Mater., 2011, 23(40): 4695-4701.
81 Shao C, Jin B, Mu Z, et al. Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial growth[J]. Sci. Adv., 2019, 5: eaaw9569.
82 Olszta M J, Cheng X, Jee S S, et al. Bone structure and formation: a new perspective[J]. Mater. Sci. Eng. R, 2007, 58(3/4/5): 77-116.
83 Niu L, Jee S E, Jiao K, et al. Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality[J]. Nat. Mater., 2016, 16(3): 370-378.
84 Shao C, Zhao R, Jiang S, et al. Citrate improves collagen mineralization via interface wetting: a physicochemical understanding of biomineralization control[J]. Adv. Mater., 2018, 30(8): 1704876.
85 Xiao C, Li M, Wang B, et al. Total morphosynthesis of biomimetic prismatic-type CaCO3 thin films[J]. Nat. Commun., 2017, 8(1): 1398.
86 Mao L B, Gao H L, Yao H B, et al. Synthetic nacre by predesigned matrix-directed mineralization[J]. Science, 2016, 354(6308): 107-110.
[1] 彭雪, 芦琛璘, 卢滇楠. 氧气和一氧化碳在人血红蛋白迁移过程研究[J]. 化工学报, 2020, 71(2): 724-735.
[2] 孙明慧, 陈静圆, 肖南, 陈奥博, 王旭珍, 邱介山. 煤基富氮层级多孔碳制备及其催化脱硫性能[J]. 化工学报, 2020, 71(2): 660-668.
[3] 刘丽雪, 张少峰, 赵长伟, 宝乐尔呼, 俞灵, 王军. β-环糊精为水相单体的复合纳滤膜制备及染料截留性能[J]. 化工学报, 2020, 71(2): 889-898.
[4] 赵绍磊, 王耀国, 张腾, 周丽娜, 龚俊波, 汤伟伟. 制药结晶中的先进过程控制[J]. 化工学报, 2020, 71(2): 459-474.
[5] 蒋瑞, 胡冬冬, 刘涛, 赵玲. 热塑性聚醚酯弹性体硬段含量对其超临界CO 2发泡行为的影响[J]. 化工学报, 2020, 71(2): 871-878.
[6] 方乘, 杨盛, 吴云, 张宏伟, 王捷, 王鲁天, 郝松泽. 絮体表面形态对膜污染预测的影响[J]. 化工学报, 2020, 71(2): 715-723.
[7] 刘子炜, 戴诗逸, 段聪, 张志伟, 庞子凡, 朱春英, 付涛涛, 马友光. 台阶式单微通道内气泡生成动力学[J]. 化工学报, 2020, 71(2): 552-565.
[8] 张文铖,龚俊波,董伟兵,吴送姑. 凝胶对结晶过程影响的研究进展[J]. 化工学报, 2020, 71(2): 487-499.
[9] 李琳, 夏淑倩, 商巧燕, 马沛生. CO2-环烷烃/芳香烃界面张力的测定与估算[J]. 化工学报, 2020, 71(1): 254-264.
[10] 李莹莹, 邓谦谦, 刘浩, 刘其春, 顾正桂, 王昉. 新型丝素复合膜的微结构表征及热稳定性[J]. 化工学报, 2020, 71(1): 388-396.
[11] 张博, 何依然, 刘迎春, 王琦. 异喹啉类生物碱和G-四链体结合的分子动力学研究[J]. 化工学报, 2020, 71(1): 344-353.
[12] 陆小华, 陈义峰, 董依慧, 吉晓燕, 谢文龙, 吴楠桦, 安蓉, 戴中洋, 李峥. 纳微界面增强CO2吸收及机理分析[J]. 化工学报, 2020, 71(1): 34-42.
[13] 张中印,袁诚阳,樊轩辉,祝捷,赵佳飞,唐大伟. 基于TDTR技术水合物热导率测量方法[J]. 化工学报, 2019, 70(S2): 54-61.
[14] 邹瀚影,冯妍卉,邱琳,张欣欣. 十八烷酸热传导机制的尺度效应研究[J]. 化工学报, 2019, 70(S2): 155-160.
[15] 诸凯, 谢艳琦, 王雅博. 冷冻保存中影响胞内冰生长的因素[J]. 化工学报, 2019, 70(S2): 208-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈玉保, 宁平, 谢有畅, 陈云华, 孙暠, 刘志云. Pilot-scale Experiment for Purification of CO from Industrial Tail Gases by Pressure Swing Adsorption[J]. CIESC Journal, 2008, 16(5): 715 -721 .
[2] 王刚, 李爱民. Thermal Decomposition and Kinetics of Mixtures of Polylactic Acid and Biomass during Copyrolysis[J]. CIESC Journal, 2008, 16(6): 929 -933 .
[3] 李加友, 柳红霞, 于红霞, 王遵尧, 王连生. Thermodynamic Properties for Polybrominated Dibenzothiophenes by Density Functional Theory[J]. CIESC Journal, 2009, 17(6): 999 -1008 .
[4] 黄兴华,王启杰,杨小琼,李国华. 不互溶双组分气液两相混合物在TEMA-F型换热器壳侧的传热 [J]. CIESC Journal, 1999, 50(1): 80 -87 .
[5] 吕雪松,李洪钟. 横向旋转磁场作用下粘性颗粒流态化质量的改善 [J]. CIESC Journal, 2000, 51(S1): 223 -226 .
[6] 李会泉,李佐虎,姚平经. 低温蒸馏塔与冷冻系统的热泵流程集成 [J]. CIESC Journal, 2000, 51(S1): 231 -235 .
[7] 官月平,姜波,朱星华,刘会洲. 生物磁性分离研究进展(Ⅰ)磁性载体制备和表面化学修饰 [J]. CIESC Journal, 2000, 51(S1): 315 -319 .
[8] 张政,谢灼利. 流体-固体两相流的数值模拟 [J]. CIESC Journal, 2001, 52(1): 1 -12 .
[9] 吴惠锦,宋瑞雪,陈春英,林正仙. 铂重整制取芳香烃及提高汽油辛烷值 [J]. CIESC Journal, 1959, 10(1): 15 -23 .
[10] 胡松, 向军, 孙路石, 付鹏, 杨涛, 苏胜, 陈巧巧. 谷壳热解过程中颗粒孔隙结构分形特性 [J]. 化工学报, 2008, 59(9): 2322 -2327 .