化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 355-360.doi: 10.11949/0438-1157.20191224

• 能源和环境工程 • 上一篇    下一篇

循环转轮空调系统变工况除湿特性

吴文翔1(),韩小渠1(),周志杰2,王宇2,种道彤1   

  1. 1.西安交通大学动力工程多相流国家重点实验室,陕西 西安 710049
    2.中国舰船研究中心,湖北 武汉 430064
  • 收稿日期:2019-10-23 修回日期:2019-11-20 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 韩小渠 E-mail:wwx19941215@stu.xjtu.edu.cn;hanxiaoqu@mail.xjtu.edu.cn
  • 作者简介:吴文翔(1994—),男,硕士研究生,wwx19941215@stu.xjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51806159);中央高校基本科研业务费专项资金项目(xjj2018061)

Dehumidification characteristics of recirculated desiccant wheel dehumidification system under variable working conditions

Wenxiang WU1(),Xiaoqu HAN1(),Zhijie ZHOU2,Yu WANG2,Daotong CHONG1   

  1. 1.State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
    2.Ship Development and Design Center, Wuhan 430064, Hubei, China
  • Received:2019-10-23 Revised:2019-11-20 Online:2020-04-25 Published:2020-05-22
  • Contact: Xiaoqu HAN E-mail:wwx19941215@stu.xjtu.edu.cn;hanxiaoqu@mail.xjtu.edu.cn

摘要:

转轮除湿空调系统可回收船舶余热将其作为转轮再生热源并改善舱室内空气品质,有望实现低能耗高效除湿。为此,建立了一种新型循环转轮除湿空调系统,定量研究了变工况条件下系统的除湿特性,获得了不同循环分流系数(45%~85%)、处理空气温度(28~40℃)、处理空气相对湿度(50%~85%)、再生空气温度(130~160℃)对系统除湿效果的影响。结果表明:所提出的转轮除湿空调系统相比常规海水直接冷凝除湿方式可有效提高除湿率;在相同循环分流系数下,系统的除湿率随着处理空气温湿度以及再生空气温度的升高而逐渐增大;系统的除湿率存在最优值,其对应的最佳循环分流系数为50%~75%,该系数随着处理空气温湿度的增大而减小,随着再生空气温度的升高而增大。

关键词: 吸附, 转轮除湿, 再生, 回收, 分流, 除湿率

Abstract:

The relative humidity of air is generally above 80% in the ship cabin. However, the people will feel uncomfortable and the immunity will decrease when the relative humidity of air is higher than 70% in the environment. Effective air dehumidification will improve the air quality in the cabin and ensure the normal navigation of the ship. According to the characteristics of the relative humidity of air in the ship cabin and the waste heat generated by the operation of the equipment, the air can be dehumidified by the rotary desiccant wheel. And the waste heat of the ship can be recovered and used as the regenerative heat source of the rotary desiccant wheel which has the characteristics of large dehumidification, high control precision, economic and environmental protection. So it s promising to apply the rotary desiccant wheel dehumidification air conditioning system to the ship for recovering the waste heat of the ship and improving the air quality of the cabin, in this way low energy consumption and efficient dehumidification can be achieved. Therefore, a regenerative recirculating dehumidification air conditioning system was proposed in the present work. The dehumidification characteristics of the system under different working conditions were quantitatively studied, and the effects of different cycle bypass coefficient (45%—85%), process air temperature (28—40℃), the relative humidity of process air (50%—85%) and regeneration air temperature (130—160℃) on the dehumidification performance of the system were obtained. The experiment results showed that the rotary desiccant wheel dehumidification air conditioning system proposed could efficiently improve the dehumidification ratio compared the conventional sea water direct cooling. Under the same cycle bypass coefficient, the dehumidification ratio increased with the increase of process air temperature, relative humidity of process air and regeneration air temperature. There existed optimal dehumidification ratios of the system, and the corresponding optimal cycle bypass coefficient was 50%—75%. It decreased with the increase of the process air temperature and the relative humidity, and increased with the increase of the regeneration air temperature.

Key words: adsorption, desiccant wheel dehumidification, regeneration, recovery, bypass, dehumidification ratio

中图分类号: 

  • TK 124

图1

循环转轮除湿系统流程原理"

图2

循环转轮除湿实验系统"

表1

实验参数范围"

项目

处理空气

温度/℃

处理空气

湿度/%

再生空气

温度/℃

处理空气温度28/33/4085150
处理空气湿度3350~80150
再生空气温度2885130~160

图3

处理空气温度对转轮系统除湿性能的影响"

图4

处理空气湿度对转轮系统除湿性能的影响"

图5

再生空气温度对转轮系统除湿性能的影响"

5 Han X Q, Yan J J, Karellas S, et al. Water extraction from high moisture lignite by means of efficient integration of waste heat and water recovery technologies with flue gas pre-drying system [J]. Applied Thermal Engineering, 2017, 110(5): 442-456.
6 王倩. 空调系统中的除湿技术[J]. 广东石油化工学院学报, 2013, 23(4): 63-67.
Wang Q. Dehumidification in air conditioning system [J]. Journal of Guangdong University of Petrochemical Technology, 2013, 23(4): 63-67.
7 李丽芬, 陈旭. 单元式空调机冷却除湿技术分析[J]. 制冷与空调, 2011, 11(4): 14-18.
Li L F, Chen X. Technology analysis of cooling dehumidification for unitary air conditioner [J]. Refrigeration and Air-Conditioning, 2011, 11(4): 14-18.
8 张燕, 金梧凤, 陈华. 冷却除湿改进技术研究[J]. 绿色科技, 2012, (9): 242-244.
Zhang Y, Jin W F, Chen H. Study of improvement techniques of cooling dehumidification [J]. Journal of Green Science and Technology, 2012, (9): 242-244.
9 王树刚, 王如竹. 船舶余热回收现状及吸附制冷应用前景[J]. 中国修船, 2003, (3): 24-26.
Wang S G, Wang R Z. Current situation of waste heat recovery and progress on application of adsorption refrigeration technology in ships [J]. China Shiprepair, 2003, (3): 24-26.
10 姚伟, 蒋志勇, 季娟娟, 等. eM-Plant在船厂生产计划调度中的可应用性研究[J]. 造船技术, 2011, (4): 8-10.
Yao W, Jiang Z Y, Ji J J, et al. Applicability study of eM-Plant in shipyard production planning [J]. Marine Technology, 2011, (4): 8-10.
11 Jani D B, Manish M, Sahoo P K. Solid desiccant air conditioning - a state of the art review [J]. Renewable and Sustainable Energy Reviews, 2016, 60: 1451-1469.
1 鲍海阁, 许清, 施红旗, 等. 船舶热湿环境人体生理应激反应实验研究[J]. 船舶工程, 2007, 29(6): 21-24.
Bao H G, Xu Q, Shi H Q, et al. Physiological simulative reaction under high temperature and high humidity environment of ships [J]. Ship Engineering, 2007, 29(6): 21-24.
12 Wang W L, Wu L M, Li Z, et al. An overview of adsorbents in the rotary desiccant dehumidifier for air dehumidification [J]. Drying Technology, 2013, 31(12): 1334-1345.
13 吴业正, 朱瑞琪, 曹小林, 等. 制冷原理及设备[M]. 2版. 西安: 西安交通大学出版社, 2015.
2 Han X Q, Chen N N, Yan J J, et al. Thermodynamic analysis and life cycle assessment of supercritical pulverized coal-fired power plant integrated with No.0 feedwater preheater under partial loads [J]. Journal of Cleaner Production, 2019, 233: 1106-1122.
3 彭光明, 任凡, 张瑶, 等. 潜艇舱室大气环境技术发展研究[J]. 中国舰船研究, 2012, 7(5): 89-94.
Peng G M, Ren F, Zhang Y, et al. Development of atmosphere technologies for submarine compartment environment [J]. Chinese Journal of Ship Research, 2012, 7(5): 89-94.
4 彭光明, 毛志强, 郑浩, 等. 潜艇液体除湿空调系统探讨[J]. 中国舰船研究, 2012, 7(6): 98-101.
Peng G M, Mao Z Q, Zheng H, et al. Discussion on submarine liquid dehumidification air conditioning system [J]. Chinese Journal of Ship Research, 2012, 7(6): 98-101.
13 Wu Y Z, Zhu R Q, Cao X L, et al. Refrigeration Principle and Equipment [M]. 2nd ed. Xi an: Xi an Jiaotong University Press, 2005.
14 Angrisani G, Roselli C, Sasso M. Effect of rotational speed on the performances of a desiccant wheel [J]. Applied Energy, 2013, 104: 268-275.
15 郑国杰, 郑超瑜, 杨光海, 等. 船用转轮除湿空调及其系统方案的比较研究[J]. 船舶工程, 2012, (5): 39-42.
Zheng G J, Zheng C Y, Yang G H, et al. Comparison research on marine rotary desiccant air-conditioning and its system scheme [J]. Ship Engineering, 2012, (5): 39-42.
16 朱军, 杨光海, 郭国凡, 等. 船用转轮除湿空调系统运行性能的分析[J]. 集美大学学报(自然科学版), 2015, 20(1): 41-46.
Zhu J, Yang G H, Guo G F, et al. Analysis on the performance of a marine rotary desiccant air-conditioning system [J]. Journal of Jimei University (Natural Science), 2015, 20(1): 41-46.
17 Ge T S, Dai Y J, Wang R Z, et al. Performance of two-stage rotary desiccant cooling system with different regeneration temperatures [J]. Energy, 2015, 80: 556-566.
18 俞文胜, 杨光海, 朱军, 等. 新风参数对船用转轮除湿空调系统性能影响的实验研究[J]. 船舶工程, 2014, (5): 62-64.
Yu W S, Yang G H, Zhu J, et al. Experimental research on influence of fresh air parameters in performance of marine rotary desiccant air-conditioning system [J]. Ship Engineering, 2014, (5): 62-64.
19 张于峰, 杜嵩, 关鹏, 等. 转轮除湿在高炉鼓风系统中的应用及其性能实验[J]. 暖通空调, 2014, (10): 62-66.
Zhang Y F, Du S, Guan P, et al. Application of desiccant wheel dehumidifying system to blast furnace blower system and its performance experiment [J]. Heating Ventilating & Air Conditioning, 2014, (10): 62-66.
20 王涛. 自我再生转轮除湿空调系统的性能研究[D]. 天津: 天津商业大学, 2014.
Wang T. Research on performance of self-regeneration desiccant wheel dehumidification air conditioning system [D]. Tianjin: Tianjin University of Commerce, 2014.
21 Jani D B, Manish M, Sahoo P K. Investigations on effect of operational conditions on performance of solid desiccant based hybrid cooling system in hot and humid climate [J]. Thermal Science and Engineering Progress, 2018, 7: 76-86.
22 Chung J D, Lee D Y, Yoon S M. Optimization of desiccant wheel speed and area ratio of regeneration to dehumidification as a function of regeneration temperature [J]. Solar Energy, 2009, 83(5): 625-635.
23 Connor Dominic O, Calautit J K, Hughes B R. A novel design of a rotary desiccant system for reduced dehumidification regeneration air temperature [J]. Energy Procedia, 2017, 142: 253-258.
24 Tu R, Liu X H, Jiang Y. Lowering the regeneration temperature of a rotary wheel dehumidification system using exergy analysis [J]. Energy Conversion and Management, 2015, 89: 162-174.
25 丛华, 李俊朋, 江鹏程, 等. 再生风温度对转轮除湿机除湿效果的影响规律[J]. 装甲兵工程学院学报, 2013, 27(6): 70-73.
Cong H, Li J P, Jiang P C, et al. Variation law in dehumidification of a rotary dehumidifier under different regeneration air temperature condition [J]. Journal of Academy of Armored Force Engineering, 2013, 27(6): 70-73.
26 葛天舒. 转轮式两级除湿空调理论与实验研究[D]. 上海: 上海交通大学, 2009.
Ge T S. Theoretical and experimental investigation on a two-stage rotary desiccant cooling system [D]. Shanghai: Shanghai Jiao Tong University, 2009.
27 郑旭, 王如竹, 王丽伟, 等. 复合除湿剂导热系数及动态除湿性能研究[J]. 工程热物理学报, 2014, 35(10): 2009-2014.
Zheng X, Wang R Z, Wang L W, et al. Study on the thermal conductivity and hygroscopic property of consolidated composite desiccants [J]. Journal of Engineering Thermophysics, 2014, 35(10): 2009-2014.
28 陈捷超, 黄宏宇, 何兆红, 等. 转轮除湿系统优化技术研究进展[J]. 新能源进展, 2017, 5(6): 457-465.
Chen J C, Huang H Y, He Z H, et al. Research progress of optimizations for rotary desiccant wheel [J]. Advances in New and Renewable Energy, 2014, (10): 2009-2014.
29 Chua K J. Heat and mass transfer of composite desiccants for energy efficient air dehumidification: modelling and experiment [J]. Applied Thermal Engineering, 2015, 89: 703-716.
30 沈维道, 童钧耕. 工程热力学[M]. 4版. 北京: 高等教育出版社, 2007.
Shen W D, Tong J G. Thermodynamics an Engineering Approach [M]. 4th ed. Beijing: Higher Education Press, 2007.
31 涂壤, 刘晓华, 江亿. 不同固体除湿方式的热质交换过程分析及性能比较[J]. 化工学报, 2013, 64(6): 1939-1947.
Tu R, Liu X H, Jiang Y. Heat and mass transfer analysis and performance comparison for different solid dehumidification methods [J]. CIESC Journal, 2013, 64(6): 1939-1947.
[1] 罗坤, 毛晓东, 庞丽萍. 新型直升机热泵空调系统驾驶舱热控性能[J]. 化工学报, 2020, 71(S1): 187-193.
[2] 陈玮玮, 方贤德, 鹿世化, 林福建, 张烨. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211.
[3] 王晨, 折晓会, 张小松. 含空气净化过程的液态空气储能热力学研究[J]. 化工学报, 2020, 71(S1): 23-30.
[4] 赵惠忠, 雷敏, 黄天厚, 刘涛, 张敏. 复合吸附剂MWCNT/MgCl2的水蒸气吸附性能[J]. 化工学报, 2020, 71(S1): 272-281.
[5] 杜伯尧, 全贞花, 侯隆澍, 赵耀华, 任海波. 新型光伏直膨式太阳能/空气能多能互补热泵性能[J]. 化工学报, 2020, 71(S1): 368-374.
[6] 刘博文, 邓帅, 李双俊, 赵力, 杜振宇, 陈丽锦. 变温吸附碳捕集系统能效性能实验研究[J]. 化工学报, 2020, 71(S1): 382-390.
[7] 武君媛, 霍伟智, 李志强, 曾嘉恒, 江燕斌. 电纺zein-SLS纤维膜的制备及其离子吸附性能研究[J]. 化工学报, 2020, 71(S1): 252-260.
[8] 龚志明, 王瑞祥, 邢美波. 全氟烷基表面活性剂吸附特性研究[J]. 化工学报, 2020, 71(4): 1754-1761.
[9] 万豫, 张敏, 翁云宣, 李成涛. 酵母菌的致孔作用对PVA/CMC水凝胶性能的影响[J]. 化工学报, 2020, 71(4): 1828-1835.
[10] 李安玉, 李双莉, 余碧戈, 马爱英, 周鑫兰, 谢建慧, 蒋艳红, 邓华. 镁浸渍生物炭吸附氨氮和磷:制备优化和吸附机理[J]. 化工学报, 2020, 71(4): 1683-1695.
[11] 刘小艳, 蔡万欣, 赵立坤, 曾香, 毛旭辉. 活性炭去除游离氯的失效机制及热再生研究[J]. 化工学报, 2020, 71(4): 1781-1790.
[12] 程华农, 邱娜娜, 岳金彩, 郑世清. 采用响应面法降低湿法氧化脱硫中Na2S2O3生成量[J]. 化工学报, 2020, 71(4): 1762-1771.
[13] 亓士超, 朱蓉蓉, 刘昕, 薛丁铭, 刘晓勤, 孙林兵. 乙二胺不同掺杂模式下多孔有机聚合物对CO2的吸附[J]. 化工学报, 2020, 71(4): 1666-1675.
[14] 陈蓓秋, 林春香, 刘以凡, 吕源财, 刘明华. 离子液体在纳米纤维素制备中的应用进展[J]. 化工学报, 2020, 71(3): 903-913.
[15] 杨鑫宇, 吴杰, 张建庭, 吴纯鑫, 赵德明. 功能化磁性纳米复合材料Fe3O4-mPD/SP吸附Cr(Ⅵ)研究[J]. 化工学报, 2020, 71(3): 1060-1071.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .