化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 204-211.doi: 10.11949/0438-1157.20191223

• 流体力学与传递现象 • 上一篇    下一篇

飞行器燃料再生冷却热管理系统参数设计

陈玮玮1(),方贤德2,鹿世化1,林福建1,张烨1   

  1. 1.南京师范大学能源与机械工程学院,江苏 南京 210023
    2.南京航空航天大学航空学院,江苏 南京 210016
  • 收稿日期:2019-10-23 修回日期:2019-11-27 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 陈玮玮 E-mail:chenweiwei@njnu.edu.cn
  • 作者简介:陈玮玮(1985—),男,博士,讲师,chenweiwei@njnu.edu.cn
  • 基金资助:
    江苏省自然科学基金项目(BK20180732);中国博士后科学基金项目(2018M632332);江苏省高等学校自然科学研究项目(18KJB470017)

Parameter design of aircraft fuel regeneration cooling thermal management system

Weiwei CHEN1(),Xiande FANG2,Shihua LU1,Fujian LIN1,Ye ZHANG1   

  1. 1.School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
    2.College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China
  • Received:2019-10-23 Revised:2019-11-27 Online:2020-04-25 Published:2020-05-22
  • Contact: Weiwei CHEN E-mail:chenweiwei@njnu.edu.cn

摘要:

考虑飞行器的服役环境以及热管理系统质量与几何尺寸的设计要求,探讨了以航空燃料再生冷却技术为基础的高超声速飞行器综合热管理系统的方案。根据不同的热载荷种类和换热方式,结合新提出的超临界压力碳氢燃料管内传热关联式,给出了飞行器热管理系统中两种类型换热设备的传热参数设计方法。利用MATLAB/SIMULINK平台的图形化交互界面创建并封装了飞行器热管理系统的主要功能模块,并以国内典型的RP-3型航空煤油为例,实现了以航空燃料为热沉的热管理系统参数设计过程。

关键词: 高超声速飞行器, 碳氢燃料, 对流, 传热, 超临界流体, 再生冷却

Abstract:

The scheme of hypersonic vehicle integrated thermal management system based on the aviation fuel regeneration cooling technology was discussed by considering the service environment of aircraft and the design requirements of the mass and geometric size of the thermal management system. According to different heat load types and heat transfer modes, together with the newly proposed in-tube heat transfer correlation under supercritical pressure for hydrocarbon fuels, the heat transfer parameter design methods for the two types of heat transfer equipment in aircraft thermal management system were given. The main functional modules of the aircraft thermal management system were created and encapsulated by using the graphical interactive interface of MATLAB/SIMULINK platform. Taking the typical RP-3 aviation kerosene as an example, the parameter design process of the thermal management system with aviation fuel as heat sink was realized.

Key words: hypersonic vehicle, hydrocarbon fuel, convection, heat transfer, supercritical fluid, regenerative cooling

中图分类号: 

  • TK 124

图1

超临界碳氢燃料综合热管理系统"

图2

第1种类型的换热设备设计流程"

图3

基于SIMULINK平台的燃料综合热管理系统"

表1

综合热管理系统设计参数"

热管理

子系统

载热

介质

入口压力/

MPa

入口温度/

K

入口流量/

(kg·s-1

热载荷/

kW

煤油

换热器

水力直径/

m

压力降/

MPa

流程数
浸液冷却甲醇0.13230.24610冷边0.030.011
热边0.040.0052
喷雾冷却FC-720.13130.4228冷边0.030.011
热边0.040.0052
座舱空气0.13100.4985冷边0.030.011
热边0.040.0052
设备舱无载热介质,壁温上限340 K6冷边0.020.011
齿轮箱PAO0.13180.2518.5冷边0.030.011
热边0.020.0052
液压设备液压油0.13200.24513冷边0.030.011
热边0.020.0052
发动机无载热介质,壁温上限850 K200冷边0.10.011

表2

综合热管理系统设计结果"

热管理子系统载热介质冷却介质

换热面积/

m2

换热

效率

压力/MPa温度/K流量/(kg·s-1压力/MPa温度/K流量/(kg·s-1
燃料罐出口无载热介质5.03000.6
浸液冷却进口0.13230.2465.03000.10.43290.766
出口0.13380.2464.99329.10.1
喷雾冷却进口0.13130.4225.03000.10.72760.759
出口0.13310.4224.99323.50.1
座舱进口0.13100.4985.03000.10.33190.747
出口0.13200.4984.99314.90.1
设备舱进口无载热介质5.03000.10.0671
出口4.99317.80.1
齿轮箱进口0.13180.2515.03000.10.53960.756
出口0.13330.2514.99324.90.1
液压设备进口0.13200.2455.03000.10.79700.776
出口0.13480.2454.99337.40.1
发动机进口无载热介质4.99324.60.60.0945
出口4.98408.70.6
1 Moses P L, Rausch V L, Nguyen L T, et al. NASA hypersonic flight demonstrators — overview, status, and future plans [J]. Acta Astronautica, 2004, 55(3): 619-630.
2 沈剑, 王伟. 国外高超声速飞行器研制计划[J]. 飞航导弹, 2006, (8): 1-9.
Shen J, Wang W. Development plan of hypersonic vehicle abroad [J]. Aerodynamic Missile Journal, 2006, (8): 1-9.
3 陈梅洁, 程珙, 田枫林, 等. 高超声速飞行器流-热-固耦合数值模拟[J]. 化工学报, 2015, 66: 89-94.
Chen M J, Cheng G, Tian F L, et al. Hypersonic vehicle flow-heat-solid coupling simulation [J]. CIESC Journal, 2015, 66: 89-94.
4 Wang J, Ran Z. Terminal guidance for a hypersonic vehicle with impact time control [J]. Journal of Guidance Control & Dynamics, 2018, 41(8):1790-1798.
5 Hu Q, Yao M, Wang C, et al. Adaptive backstepping control for air-breathing hypersonic vehicles with input nonlinearities [J]. Aerospace Science & Technology, 2018, 73: 289-299.
6 Edwards T. Aviation fuel development – past highlights and future prospects [C]// Proceedings of AIAA International Air and Space Symposium and Exposition: The Next 100 Years. Dayton, Ohio, USA, 2003.
7 Hou Y Z, Zheng J L, Dong W. Transient test of aerodynamic heating for hypersonic vehicle [J]. Journal of Aerospace Power, 2010, 25(2): 343-347.
8 Lu H, Liu W. Numerical simulation in influence of forward-facing cavity on aerodynamic heating of hypersonic vehicle [J]. Procedia Engineering, 2012, 29(4): 4096-4100.
9 Mifsud M, Estruch-Samper D, Macmanus D, et al. A case study on the aerodynamic heating of a hypersonic vehicle [J]. Aeronautical Journal, 2012, 116(1183): 873-893.
10 Fujii K, Watanabe S, Kurotaki T, et al. Aerodynamic heating measurements on nose and elevon of hypersonic flight experiment vehicle [J]. Journal of Spacecraft & Rockets, 2015, 38(1): 8-14.
11 郭永胜, 张玲玲, 魏会, 等. 改善吸热型碳氢燃料热管理能力的研究进展[J]. 石油学报(石油加工), 2011, 27(5): 822-828.
Guo Y S, Zhang L L, Wei H, et al. Research progress in improvement of thermal management capacities of endothermic hydrocarbon fuels [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2011, 27(5): 822-828.
12 耿宸, 郭亚军, 冯松, 等. 随机温度信号互相关法测量吸热型碳氢燃料密度[J]. 化工学报, 2019, 70(1): 24-31.
Geng C, Guo Y J, Feng S, et al. Density measurements of endothermic hydrocarbon fuel using random temperature signal cross-correlation [J]. CIESC Journal, 2019, 70(1): 24-31.
13 严俊杰, 祝银海, 芦泽龙, 等. 超临界压力碳氢燃料瞬态加热响应特性[J]. 化工学报, 2015, 66: 65-70.
Yan J J, Zhu Y H, Lu Z L, et al. Transient response of supercritical pressure hydrocarbon fuels during heating condition [J]. CIESC Journal, 2015, 66: 65-70.
14 Leylegian J, Chinitz W. Investigation of short contact time reactors for regeneratively-cooled hypersonic vehicles [J]. Journal of Propulsion & Power, 2012, 28(2): 412-422.
15 Zhu Y, Wei P, Xu R, et al. Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles [J]. Chinese Journal of Aeronautics, 2018, 31(10): 4-28.
16 Lander H, Nixon A C. Endothermic fuels for hypersonic vehicles [J]. Journal of Aircraft, 1971, 8(4): 200-207.
17 Huang H, Sobel D R, Spadaccini L J. Endothermic heat-sink of hydrocarbon fuels for scramjet cooling [C]// Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Indianapolis, Indiana, USA, 2002.
18 Huang H, Spadaccini L J, Sobel D R. Fuel-cooled thermal management for advanced aeroengines [J]. Journal of Engineering for Gas Turbines and Power, 2004, 126(2): 284-293.
19 陈玮玮, 方贤德. 超临界压力下航空煤油RP-3竖直管内传热关系式评价[C]//工程热物理学会多相流学术会议暨国家自然科学基金进展交流会论文集. 南京, 2015: 156072.
Chen W W, Fang X D. Evaluation of heat transfer correlations of aviation kerosene RP-3 under supercritical pressure in vertical tubes [C]// Proceedings of the Multiphase Flow and the Progress of the National Natural Science Foundation of Engineering Thermal Physics Society. Nanjing, 2015: 156072.
20 Chen W, Fang X. Modeling of convective heat transfer of RP-3 aviation kerosene in vertical miniature tubes under supercritical pressure [J]. International Journal of Heat and Mass Transfer, 2016, 95: 272-277.
21 孙星, 徐可可, 孟华. 超临界压力正癸烷在螺旋管中传热与裂解吸热现象的数值模拟[J]. 化工学报, 2018, 69: 20-25.
Sun X, Xu K K, Meng H. Supercritical-pressure heat transfer of n-decane with fuel pyrolysis in helical tube [J]. CIESC Journal, 2018, 69: 20-25.
22 王彦红, 李素芬, 赵星海. 超临界压力下航空煤油传热恶化的分析与预测[J]. 化工学报, 2018, 69(12): 5056-5064.
Wang Y H, LI S F, Zhao X H. Analysis and prediction of heat transfer deterioration of aviation kerosene under supercritical pressures [J]. CIESC Journal, 2018, 69(12): 5056-5064.
23 胡志宏, 陈听宽, 罗毓珊, 等. 高热流条件下超临界压力煤油流过小直径管的传热特性[J]. 化工学报, 2002, 53(2): 134-138.
Hu Z H, Chen T K, Luo Y S, et al. Heat transfer to kerosene at supercritical pressure in small-diameter tube with large heat flux [J]. Journal of Chemical Industry and Engineering (China), 2002, 53(2): 134-138.
24 Tao Z, Cheng Z, Zhu J, et al. Effect of turbulence models on predicting convective heat transfer to hydrocarbon fuel at supercritical pressure [J]. Chinese Journal of Aeronautics, 2016, 29(5): 1247-1261.
25 Fu Y, Jie W, Zhi T, et al. Experimental research on convective heat transfer of supercritical hydrocarbon fuel flowing through U-turn tubes [J]. Applied Thermal Engineering, 2017, 116: 43-55.
26 王浚, 王佩广. 高超声速飞行器一体化防热与热控设计方法[J]. 北京航空航天大学学报, 2006, 32(10): 1129-1134.
Wang J, Wang P G. Integrated thermal protection and control design methodology for hypersonic vehicles [J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(10): 1129-1134.
27 王佩广, 刘永绩, 王浚. 高超声速飞行器综合热管理系统方案探讨[J]. 中国工程科学, 2007, 9(2): 44-48.
Wang P G, Liu Y J, Wang J. Discussion on integrated environment control/thermal management system concepts for hypersonic vehicle [J]. Engineering Science, 2007, 9(2): 44-48.
28 Jiang Q, Zhou W, Wen B, et al. Thermodynamic analysis and parametric study of a closed Brayton cycle thermal management system for scramjet [J]. International Journal of Hydrogen Energy, 2010, 35(1): 356-364.
29 Kumar S, Mahulikar S P. Design of thermal protection system for reusable hypersonic vehicle using inverse approach [J]. Journal of Spacecraft & Rockets, 2017, 54(2): 1-11.
30 Dittus F W, Boelter L M K. Heat transfer in automobile radiators of the tubular type [J]. University of California Publications in English, Berkeley, 1930, 2: 443-461.
[1] 刘子初, 全贞花, 赵耀华, 靖赫然, 姚孟良, 刘新. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128.
[2] 裴后举, 蒋彦龙, 施红, 崔永龙, 陈常栋, 钱晓辉. 基于M-L湍流模型的浮空器强迫对流换热[J]. 化工学报, 2020, 71(S1): 136-141.
[3] 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157.
[4] 孙苏芮, 王德昌, 张金翠, 刘振, 李延辉. 膜蓄能器放能过程的传热传质特性分析[J]. 化工学报, 2020, 71(S1): 158-165.
[5] 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171.
[6] 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186.
[7] 王瑞琪, 高赞军, 杨华, 胡文超, 詹宏波. 机载冷源参数对蒸发循环系统性能的影响[J]. 化工学报, 2020, 71(S1): 212-219.
[8] 常健佩, 黄翔, 安苗苗, 李朝阳. 蒸发冷却冷水机组的原理、性能与适用性分析[J]. 化工学报, 2020, 71(S1): 236-244.
[9] 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37.
[10] 张晨宇, 王宁, 徐洪涛, 张剑飞, 曹萌. 基于相变材料的太阳能PV/T系统性能[J]. 化工学报, 2020, 71(S1): 361-367.
[11] 郭良, 李恒, 庞丽萍, 毛晓东, 赵竞全, 杨晓东. 高速运载器发电/制冷联合系统稳态性能[J]. 化工学报, 2020, 71(S1): 391-396.
[12] 郭栋才, 盛强, 杨鹏, 徐捷, 王泽, 杨波, 曹娇坤. 基于热电效应的高效环控系统[J]. 化工学报, 2020, 71(S1): 404-410.
[13] 马德胜, 庞丽萍, 毛晓东, 董素君. 机载综合环控系统的热管理[J]. 化工学报, 2020, 71(S1): 436-440.
[14] 李阳, 常守金, 胡海涛, 孙浩然, 赖展程, 刘善敏. 飞行器机载精密仪器温控系统性能的实验研究[J]. 化工学报, 2020, 71(S1): 77-82.
[15] 詹宏波, 郑文远, 文涛, 张大林. 微尺度通道内R134a的冷凝传热实验研究[J]. 化工学报, 2020, 71(S1): 83-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .