化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3132-3139.doi: 10.11949/0438-1157.20191212

• 分离工程 • 上一篇    下一篇

环己醇精馏残液催化加氢分离二环己基醚工艺研究

霍二福1(),李迎春2,杨帅1,冯明1,程伟琴1,王柏楠1,魏新军2()   

  1. 1.河南省化工研究所有限责任公司,河南 郑州 450052
    2.平顶山市神马万里化工股份有限公司, 河南 平顶山 467000
  • 收稿日期:2019-10-23 修回日期:2020-04-08 出版日期:2020-07-05 发布日期:2020-04-29
  • 通讯作者: 魏新军 E-mail:hef330@aliyun.com;hef130@eyou.com
  • 作者简介:霍二福(1981—),男,博士,副研究员,hef330@aliyun.com
  • 基金资助:
    河南省科学院基本科研业务费项目(190608026);河南省科学院科技开发补助项目(18JB08011)

Study on separation process of dicyclohexyl ether by catalytic hydrogenation from cyclohexanol distillation residue

Erfu HUO1(),Yingchun LI2,Shuai YANG1,Ming FENG1,Weiqin CHENG1,Bonan WANG1,Xinjun WEI2()   

  1. 1.Henan Chemical Industry Research Institute Limited Company, Zhengzhou 450052, Henan, China
    2.Pingdingshan Shenma Wanli Chemical Limited Company, Pingdingshan 467000, Henan, China
  • Received:2019-10-23 Revised:2020-04-08 Online:2020-07-05 Published:2020-04-29
  • Contact: Xinjun WEI E-mail:hef330@aliyun.com;hef130@eyou.com

摘要:

针对环己醇精馏残液中各组分沸点相近,常规分离方法分离难度大等技术问题,采用催化加氢的方法将环己醇精馏残液中的3-环己基环己烯、1-环己基环己烯和环己亚基环己烷还原为双环己烷,扩大分离组分间的沸点差,经减压精馏分离,得到高纯度的双环己烷和二环己基醚。以Pd/C为催化剂,通过对比实验获得了环己醇精馏残液中的3-环己基环己烯、1-环己基环己烯和环己亚基环己烷催化加氢转化为双环己烷的最佳工艺条件:反应温度120℃、反应压力4 MPa、反应时间4 h、搅拌速度550 r/min、Pd/C催化剂用量为物料质量的0.4%,原料转化率为98.7%,双环己烷的选择性大于99.5%;经减压精馏分离后,双环己烷和二环己基醚的纯度大于99.5%。

关键词: 环己醇精馏残液, 二环己基醚, 双环己烷, 加氢, 分离, 优化

Abstract:

In order to solve the key technical problems such as similar boiling points of cyclohexanol distillation residues and the difficulty of separation by conventional separation methods, the 3-cyclohexylcyclohexene, 1-cyclohexylcyclohexene and dicyclohexylidene were reduced to cyclohexylcyclohexane by catalytic hydrogenation and the boiling point difference between the two components was enlarged. High purity cyclohexylcyclohexane and dicyclohexyl ether were obtained by vacuum distillation. Using Pd/C as catalyst, the optimum conditions for catalytic hydrogenation of 3-cyclohexylcyclohexene, 1-cyclohexylcyclohexene and dicyclohexyl- idene to cyclohexylcyclohexane in residual solution were obtained. The reaction temperature was 120℃, the reaction time was 4 h, the reaction pressure was 4 MPa, the stirring speed was 550 r/min, the amount of Pd/C catalyst was 0.4% of the mass of the material, the selectivity was more than 99.5% and the conversion rate of the materials was 98.7%. After vacuum distillation, the purity of cyclohexylcyclohexane and dicyclohexyl ether is more than 99.5%.

Key words: residual liquid of cyclohexanol distillation tower, dicyclohexyl ether, cyclohexylcyclohexane, hydrogenation, separation, optimization

中图分类号: 

  • O 624.11

图1

环己醇精馏残液气相色谱-质谱联用分析色谱图"

图2

环己醇精馏残液气相色谱-质谱联用分析质谱图"

表1

环己醇精馏残液GC-MS分析TIC峰"

峰号保留时间/min峰面积峰面积/%组分名称
合计72866518100
15.92320175502.77杂质
26.20834896464.793-环己基环己烯
36.47839001325.351-环己基环己烯
47.02141026325.63亚环己基环己烷
57.7845935655881.46二环己基醚

图3

催化加氢反应物和产物的结构式"

表2

反应温度对催化加氢反应效果的影响"

序号反应温度/℃原料的转化率/%双环己烷的选择性/%
18080.499.6
210092.999.6
312098.799.6
414094.699.6
516090.399.3

表3

反应压力对催化加氢反应效果的影响"

序号反应压力/MPa原料的转化率/%双环己烷的选择性/%
13.076.999.6
23.590.999.6
34.098.799.6
44.599.199.6
55.099.599.6

表4

反应时间对催化加氢反应效果的影响"

序号反应时间/h原料的转化率/%双环己烷的选择性/%
12.073.299.8
23.083.199.8
33.595.699.8
44.098.799.6
54.598.999.6
65.099.399.5

表5

搅拌速度对催化加氢反应效果的影响"

序号搅拌速度/(r/min)原料的转化率/%双环己烷的选择性/%
135068.799.1
240077.999.4
345088.999.6
450092.799.6
555098.799.6
660098.999.6

表6

催化剂用量对催化加氢反应效果的影响"

序号催化剂加入质量分数/%原料的转化率/%双环己烷的选择性/%
10.173.999.6
20.280.299.6
30.391.699.6
40.498.799.6
50.598.799.6

图4

Pd/C催化剂重复使用次数对加氢反应效果的影响"

表7

真空度对二环己基醚分离效果的影响"

序号真空度/Pa二环己基醚纯度/%
1100098.1
280098.4
360098.9
430099.3
520099.6
610098.7
75097.6

表8

回流比对分离二环己基醚效果的影响"

序号回流比双环己烷度/1%二环己基醚纯度/%
16∶199.9999.94
25∶199.9699.82
34∶199.9599.75
43∶199.8999.63
52∶199.1299.18
61∶199.5698.32
1 崔小明. 国内外己二酸的市场现状及发展前景[J]. 精细与专用化学品, 2013, 21(1): 6-16.
Cui X M. Market status and development prospect of adiopic acid at home and abroad[J]. Fine and Specialty Chemicals, 2013, 21(1): 6-16.
2 杨彦松, 蹇建, 游奎一, 等. 合成己二酸工艺研究进展[J]. 化工进展, 2013, 32(11): 2638-2643.
Yang Y S, Jian J, You K Y, et al. Research progress of synthesis route of adipic acid[J]. Chemical Industry and Engineering Progress, 2013, 32(11): 2638-2643.
3 周能, 李飞, 王旭峰. 己二酸合成研究最新进展[J]. 上海化工, 2017, 42(12): 31-34.
Zhou N, Li F, Wang X F. Research progress in the synthesis of adipic acid[J]. Shanghai Chemical Industry,
2017, 42(12): 31-34.
4 赵爱华, 谢云峰, 陈晨. 己二酸生产工艺及国内外生产现状[J]. 煤炭与化工, 2018, 41(1): 133-134+137.
Zhao A H, Xie Y F, Chen C. Production technology of adipic acid production home and abroad[J]. Coal and Chemical Industry, 2018, 41(1): 133-134+137.
5 杨冬. 我国己二酸的供需现状及发展前景[J]. 化工管理, 2019, (6): 17.
Yang D. Present situation and development prospect of adipic acid supply and demand in China[J]. Chemical Enterprise Management, 2019, (6): 17.
6 陈涛, 王焕哲, 杨建新. 我国环己醇法合成己二酸工艺研究进展[J]. 化工技术与开发, 2017, 46(2): 25-26+58.
Chen T, Wang H Z, Yang J X. Research Progress in synthesis technology of adipic acid by cyclohexene route in China[J]. Technology & Development of Chemical Industry, 2017, 46(2): 25-26+58.
7 孙晓敏. 环己醇催化氧化合成己二酸的研究[D]. 郑州:郑州大学,2008.
Sun X M. Study on catalytic oxidation of cyclohexyl alcohol to adipic acid[D]. Zhengzhou: Zhengzhou University, 2008.
8 訾文礼, 王美丽, 王月昶. 环己醇精馏系统改造小结[J]. 中氮肥, 2019, (1): 66-68.
Zi W L, Wang M L, Wang Y C. Summary of the modification of the distillation system of cyclohexanol [J]. M-Sized Nitrogenous Fertilizer Progress, 2019, (1): 66-68.
9 杨涛, 李肖, 宁阳坤,等. 双塔精馏回收环己醇工艺模拟与优化[J]. 现代化工, 2017, 37(8): 195-199.
Yang T, Li X, Ning Y K, et al. Simulation and optimization of cyclohexanol recovery by twin towers distillation[J]. Modern Chemical Industry, 2017, 37(8): 195-199.
10 魏菁华, 陈天天, 张志岩, 等. 环己醇精馏塔塔底废液的组分分析[J]. 河南化工, 2016, 33(1): 61-63.
Wei J H, Chen T T, Zhang Z Y, et al. Component analysis of waste liquid at the bottom of cyclohexanol distillation tower [J]. Henan Chemical Industry, 2016, 33(1): 61-63.
11 魏新军, 魏菁华, 袁琳, 等. 环己醇精馏塔底液中环己醇回收装置的塔板数计算[J]. 河南科学, 2016, 34(9): 1541-1545.
Wei X J, Wei J H, Yuan L, et al. Calculation of plate number of recycling device of cyclohexanol coming
from bottom liquid of cyclohexanol distillation column [J]. Henan Science, 2016, 34(9): 1541-1545.
12 李迎春, 段文蕊, 宁永亮,等. 环己醇生产装置中精馏塔群的技术改造[J]. 河南化工, 2014, 31(12): 40-41.
Li Y C, Duan W R, Ning Y L, et al. Technical transformation of distillation tower group in cyclohexyl alcohol production Unit[J]. Henan Chemical Industry, 2014, 31(12): 40-41.
13 王留栓, 魏菁华, 郝凌云,等. 环己醇精馏塔塔底料液减压蒸馏加精馏分离工艺优化[J]. 河南科学, 2017, 35(3): 389-397.
Wang L S, Wei J H, Hao L Y, et al. Optimization of vacuum distillation and rectification separation process for the bottom liquid of cyclohexanol distillation column[J]. Henan Science, 2017, 35(3): 389-397.
14 魏新军, 魏菁华, 李佳珂,等. 环己醇精馏塔塔底液中环己醇的回收[J]. 河南化工, 2015, 32(7): 41-43.
Wei X J, Wei J H, Li J K, et al. Recovery of cyclohexanol from the bottom liquid of cyclohexanol rectification column[J]. Henan Chemical Industry, 2015, 32(7): 41-43.
15 任保增, 李涛, 杨涛. 从环己醇精馏塔釜液中回收二环己基醚的方法: 107235831A [P]. 2017-10-10.
Ren B Z, Li T, Yang T. Method for recovering dicyclohexyl ether from cyclohexanol distillation column bottom residues: 107235831A [P]. 2017-10-10.
16 霍二福, 冯明, 程伟琴,等. 一种环己醇精馏残液中回收的二环己基醚的精制方法: 109251134A[P]. 2019-01-22.
Huo E F, Feng M, Cheng W Q, et al. Refining method of dicyclohexyl ether recovered from cyclohexanol rectification residual liquid: 109251134A[P]. 2019-01-22.
17 李雪琴, 曹利, 于胜楠, 等. 石脑油高效资源化研究进展[J]. 化工学报, 2015, 66(9): 3287-3295.
Li X Q,Cao L,Yu S N, et al. Recent development of efficient utilization of naphtha[J]. CIESC Journal, 2015, 66(9): 3287-3295.
18 张铸勇,祁国珍,庄莆.精细有机合成单元反应[M]. 2版. 上海: 华东理工大学出版社, 2003: 75-89.
Zhang Z Y, Qi G Z, Zhuang P. Fine Organic Synthesis Unit Reaction[M]. 2nd ed. Shanghai: East China University of Technology Press, 2003: 75-89.
19 徐善利, 陈宏博, 李树德. 催化加氢还原芳香硝基化合物制备芳胺的技术进展[J]. 精细石油化工, 2006, 23(4): 58-61.
Xu S L, Chen H B, Li S D. Progress in preparation of aromatic amine from aromatic nitro compounds by catalytic hydrogenation[ J]. Speciality Petrochemicals, 2006, 23(4): 58-61.
20 任杰, 胡望伟, 袁海宽, 等. Ni2P/SiO2催化剂制备及其乙酸加氢制乙醇催化性能评价[J]. 化工学报, 2017, 68(8): 3082-3088.
Ren J, Hu W W, Yuan H K, et al. Preparation and performance evaluation of Ni2P/SiO2 catalysts for acetic acid hydrogenation to produce ethanol[J]. CIESC Journal, 2017, 68(8): 3082-3088.
21 丁军委, 毛康成. 无溶剂催化加氢合成2,2'-二氯氢化偶氮苯[J]. 现代化工, 2019, 39(7): 170-175.
Ding J W,Mao K C. Synthesis of 2,2'-dichlorohydroazobenzene by catalytic hydrogenation without solvent[J]. Modern Chemical Industry, 2019, 39(7): 170-175.
22 徐永强, 商红岩, 刘晨光. 压力和温度对4-甲基二苯并噻吩和二苯并噻吩加氢脱硫反应的影响[J]. 燃料化学学报, 2004, 32(2): 199-204.
Xu Y Q, Shang H Y, Liu C G. Effects of reaction pressures and temperatures on the hydrodesulfurization of 4-methyldibenzothiophene and dibenzothiophene[J]. Journal of Fuel Chemistry and Technology, 2004, 32(2): 199-204.
23 Zang P, Wu T, Jiang T, et al. Ru-Zn supported on hydroxyapatite as an effective catalyst for partial hydrogenation of benzene[J]. Green Chemistry, 2013, 15(1): 152-159.
24 刘玉枫, 孟庆方, 徐国想. 无溶剂液相催化加氢合成邻氨基苯甲醚的工艺研究[J]. 淮海工学院学报(自然科学版), 2019, 28(1): 68-71.
Liu Y F, Meng Q F, Xu G X. Study on solvent-free liquid phase catalytic hydrogenation process of the production of 2-anisidine[J]. Journal of Huaihai Institute of Technology(Natural Science Edition), 2019, 28(1): 68-71.
25 孙羽蒙, 吴平东. 对硝基苯甲酸催化加氢本征动力学[J]. 化学反应工程与工艺, 1999, 15(1): 2-8+13.
Sun Y M, Wu P D. Kinetics of hydrogenation of p-nitrobenzoic acid[J]. Chemical Reaction Engineering and Technology, 1999, 15(1): 2-8+13.
26 成乐琴, 李庆鑫. 7,7-二氯二环[4.1.0]庚烷的合成工艺优化[J]. 吉林化工学院学报, 2016, 33(11): 20-24.
Cheng L Q,Li Q X. Technological optimization for preparation of 7,7-dichlorobicyclo[4.1.0]heptane[J]. Journal of Jilin Institute of Chemical Technology, 2016, 33(11): 20-24.
27 陈稼轩, 蒋文伟, 周家焱. 催化加氢制备3,4-亚甲二氧基苯胺[J]. 应用化工, 2004, 33(6): 60-62.
Chen J X, Jiang W W, Zhou J Y. Preparation of 3,4-methylene-dioxy aniline by catalytic hydrogenation[J]. Applied Chemical Industry, 2004, 33(6): 60-62.
28 孙海杰, 陈秀丽, 黄振旭, 等. NaOH浓度对苯选择加氢制环己烯Ru-Zn催化剂性能的影响[J]. 化工学报, 2016, 67(4): 1324-1332.
Sun H J, Chen X L, Huang Z X, et al. Effect of NaOH concentration on performance of Ru-Zn catalyst for selective hydrogenation of benzene to cyclohexene[J]. CIESC Journal, 2016, 67(4): 1324-1332.
29 王琳, 王东贤, 宫清涛, 等. α-烷基苯甲醇的催化氢化[J]. 化工学报, 2005, 56(1): 70-74.
Wang L, Wang D X, Gong Q T, et al. Hydrogenation of α-alkyl benzoic alcohol into corresponding alkyl benzene catalyzed by Pd/C[J]. Journal of Chemical Industry and Engineering(China), 2005, 56(1): 70-74.
30 王碧玉, 葛秀秀, 吴方棣, 等. 环己烯催化水合制环己醇的研究进展[J]. 化工进展, 2010, 29(5): 861-865.
Wang B Y, Ge X X, Wu F D, et al. Progress in cyclohexanol preparation by catalytic hydration of cyclohexene[J]. Chemical Industry and Engineering Progress, 2010, 29(5): 861-865.
[1] 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171.
[2] 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186.
[3] 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37.
[4] 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321.
[5] 徐刚, 庞丽萍. 特种车辆舱室送风系统布局仿真优化[J]. 化工学报, 2020, 71(S1): 335-340.
[6] 周月, 张鹤林, 程定斌, 尹俊成. 典型空气循环制冷系统仿真研究[J]. 化工学报, 2020, 71(S1): 341-345.
[7] 刘博文, 邓帅, 李双俊, 赵力, 杜振宇, 陈丽锦. 变温吸附碳捕集系统能效性能实验研究[J]. 化工学报, 2020, 71(S1): 382-390.
[8] 刘秀峰, 张诗, 周志杰, 郑浩, 王成泽, 时红远, 李梦杰. 换热器结构优化与换热性能评价指标研究[J]. 化工学报, 2020, 71(S1): 98-105.
[9] 杨辉,代文豪,陆荣秀,朱建勇. 基于分离系数校正的稀土萃取流程模拟[J]. 化工学报, 2020, 71(7): 3180-3190.
[10] 李炜,王晓明,蒋栋年,李亚洁,梁成龙. 基于SHPSO-GA-BP的成品汽油调和中加氢汽油组分辛烷值的预测[J]. 化工学报, 2020, 71(7): 3191-3200.
[11] 蔡媛媛,郭百涛,邢卫红,高从堦. 面向健康产业应用需求的膜技术与膜材料[J]. 化工学报, 2020, 71(7): 2933-2944.
[12] 马珊宏,叶枫,王燕鸿,郎雪梅,樊栓狮,李刚. ZSM-5沸石膜用于生物油的脱水分离及其再生过程研究[J]. 化工学报, 2020, 71(7): 3345-3353.
[13] 王雅洁,李蕾,张倩,李倩,李望良. 磁响应分离膜研究进展[J]. 化工学报, 2020, 71(7): 2921-2932.
[14] 陈威,于梅红,赵红霞. 优化控制R744多喷射器双温超市制冷系统[J]. 化工学报, 2020, 71(7): 3266-3277.
[15] 黄桂冬, 张凇源, 葛众, 解志勇, 相华江, 鄢银连, 袁志鹏. 基于内置换热器有机闪蒸循环的热性能研究[J]. 化工学报, 2020, 71(7): 3080-3090.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 梁英华, 郭红霞, 陈红萍, 吕敬德, 张波波. Effect of Doping Cerium in the Support of Catalyst Pd-Co/Cu-Co-Mn Mixed Oxides on the Oxidative Carbonylation of Phenol[J]. CIESC Journal, 2009, 17(3): 401 -406 .
[2] 华卉, 陈祎玮, 金万勤, 徐南平. 自组装普鲁士蓝膜修饰电极的制备及表征 [J]. 化工学报, 2007, 58(8): 2056 -2061 .
[3] 侯红勋, 王淑莹, 闫骏, 彭永臻. 不同碳源类型对生物除磷过程释放磷的影响 [J]. 化工学报, 2007, 58(8): 2081 -2086 .
[4] 赵力, 朱禹, 王晓东, 韩建盛. 空调工况下非共沸制冷剂在冷凝器内的传热窄点 [J]. 化工学报, 2007, 58(10): 2450 -2454 .
[5] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[6] 周新华, 涂伟萍, 胡剑青, 崔英德. 影响阴离子聚丙烯酸羟基树脂包覆HDI缩二脲乳胶粒粒径的因素 [J]. 化工学报, 2006, 57(1): 180 -185 .
[7] 马淳安, 徐颖华, 褚有群, 毛信表, 赵峰鸣, 朱英红. 3,6-二氯吡啶甲酸电化学合成及其工业化生产 [J]. 化工学报, 2010, 61(3): 699 -703 .
[8] 俞强,孙建中,唐福瑞. 光纤法检测三相流局部相含率 [J]. CIESC Journal, 1991, 42(4): 514 -517 .
[9] 张齐, 戴伟, 穆玮, 于海波. 原位红外光谱法研究Pd-Ag/Al2O3和Pd/ Al2O3乙炔加氢催化剂 [J]. 化工学报, 2011, 62(1): 71 -77 .
[10] 李强, 宣益民. 纳米流体热导率的测量 [J]. 化工学报, 2003, 54(1): 42 -46 .