化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 236-244.doi: 10.11949/0438-1157.20191210

• 流体力学与传递现象 • 上一篇    下一篇

蒸发冷却冷水机组的原理、性能与适用性分析

常健佩(),黄翔(),安苗苗,李朝阳   

  1. 西安工程大学城市规划与市政工程学院,陕西 西安 710048
  • 收稿日期:2019-10-23 修回日期:2019-12-10 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 黄翔 E-mail:243090529@qq.com;huangx@xpu.edu.cn
  • 作者简介:常健佩(1992—),男,硕士研究生,243090529@qq.com
  • 基金资助:
    “十三五”国家重点研发计划项目(2016YFC0700404)

Analysis of principle, performance and applicability of indirect evaporative water chiller

Jianpei CHANG(),Xiang HUANG(),Miaomiao AN,Zhaoyang LI   

  1. College of Urban Planning and Municipal Engineering, Xi’an Polytechnic University, Xi’an 710048, Shaanxi, China
  • Received:2019-10-23 Revised:2019-12-10 Online:2020-04-25 Published:2020-05-22
  • Contact: Xiang HUANG E-mail:243090529@qq.com;huangx@xpu.edu.cn

摘要:

总结了蒸发冷却冷水机组结构类型和工作原理,理论和实测验证了间接蒸发冷却的湿通道侧发生的并非绝热等焓直接蒸发冷却。根据对间接预冷式蒸发冷却冷水机组的性能测试分析,间接蒸发冷却器的湿球效率在41%~92%之间,立管、板管、露点间接蒸发冷却器比卧管间接蒸发冷却器效率高,间接预冷式蒸发冷却冷水机组制备冷水可达到亚湿球温度,制备冷水温度受间接蒸发冷却器效率、填料塔内气水比、外热源影响。以间接预冷式蒸发冷却冷水机组、机械制冷冷水机组、乙二醇自然冷却为冷源的数据中心空调系统,水侧蒸发冷却与乙二醇自然冷却应用在乌鲁木齐市、北京市、上海市的时间分别为8736、6261、4708 h,相比机械制冷的全年节电率分别为62%、53%、46%。

关键词: 蒸发, 传热, 传质, 焓, 间接蒸发冷却器, 数据中心运行时间, 节电率

Abstract:

The structure types and working principle of evaporative water chillers are summarized. Analysis of cold water production by evaporative cooling through the psychrometric charts, theoretical and experimental results verify that the indirect evaporative cooling on the wet channel side is not adiabatic direct evaporative cooling. According to the performance test analysis of the indirect pre-cooling evaporative water chillers, the wet bulb efficiency of several types of to indirect evaporative coolers are between 41% and 92%. Vertical tube, plate tube and dew point indirect evaporative coolers are more efficient than horizontal tube indirect evaporative coolers, indirect pre-cooling evaporative water chillers can produce cold water to reach sub-wet bulb temperature. In addition to the influence of the efficiency of the indirect evaporative cooler, the production of water temperature is also affected by the gas-water ratio in the padding tower and the external heat source in the padding tower. Data center air conditioning system with indirect pre-cooling evaporative water chillers, mechanical refrigeration chillers, ethylene glycol natural cooling as cold source. The time of evaporative water cooling and the natural cooling of ethylene glycol in Urumqi, Beijing, and Shanghai are 8736, 6261, and 4708 h, respectively. Compared with mechanical refrigeration, the annual energy saving rate is 62%, 53%, and 46%, respectively.

Key words: evaporation, heat transfer, mass transfer, enthalpy, indirect evaporative cooler, data center operating time, power saving rate

中图分类号: 

  • TK 172

图1

蒸发冷却制取冷水焓湿图"

图2

表冷+卧管间接预冷式蒸发冷却冷水机组性能测试"

图3

立管间接预冷式蒸发冷却冷水机组性能测试"

图4

板管间接预冷式蒸发冷却冷水机组性能测试"

图5

露点间接预冷式蒸发冷却冷水机组性能测试"

图6

立管间接预冷封闭式蒸发冷却冷水机组性能测试"

图7

数据中心用自然冷型蒸发冷却复合机械制冷的空调系统1—表冷段;2—间接蒸发冷却段;3—填料塔"

表1

数据中心设计规范"

项目技术要求备注
冷通道或机柜进风区域的温度18~27℃不得结露
冷通道或机柜进风区域的相对湿度和露点温度露点温度宜为5.5~15℃,相对湿度不宜大于60%
主机房环境温度和相对湿度(停机时)5~45℃,8%~80%,同时露点温度不宜大于27℃
冷冻水供水温度7~21℃
冷冻水回水温度12~27℃

表2

数据中心用自然冷型蒸发冷却复合机械制冷的空调系统运行模式"

环境工况运行模式启动机组
tg≤3℃乙二醇自然冷却机房专用高温冷水空调机组
tg>3℃,tG≤16℃水侧蒸发冷却蒸发冷却冷水机组+机房专用高温冷水空调机组
tg>3℃,21℃≥tG>16℃蒸发冷却冷水机组+辅助冷源蒸发冷却冷水机组+新风机组/机械制冷冷水机组
tG>21℃机械制冷冷源机械制冷-蒸发冷却冷水机组

图8

新型空调系统在典型城市数据中心全年运行时间"

表3

国内典型城市数据中心全年8760 h运行节能性分析"

地点机械制冷空调系统用电/kW新型空调系统用电/kW节电/kW节电率/%
乌鲁木齐41084401549665255877562
北京41084401925860218258053
上海41084402220043188839746
1 黄翔. 空调工程[M]. 3版. 北京: 机械工业出版社, 2017: 458.
Huang X. Air-conditioning Engineering[M]. 3rd ed. Beijing: China Machine Press, 2017: 458.
2 黄翔. 蒸发冷却空调原理与设备[M]. 北京: 机械工业出版社, 2019: 269.
Huang X. Evaporative Cooling Air Conditioning Principle and Equipment[M]. Beijing: China Machine Press, 2019: 269.
3 谢晓云, 江亿, 刘拴强, 等. 间接蒸发冷水机组设计开发及性能分析[J]. 暖通空调, 2007, 37(7): 66-70.
Xie X Y, Jiang Y, Liu S Q, et al. Design and development of an indirect evaporative water chiller[J]. Heating Ventilating & Air Conditioning, 2007, 37(7): 66-70.
4 江亿, 谢晓云, 于向阳. 间接蒸发冷却技术——中国西北地区可再生干空气资源的高效应用[J]. 暖通空调, 2009, 39(9): 1-4.
Jiang Y, Xie X Y, Yu X Y. Indirect evaporative cooling technology: high-performance application of renewable dry air energy in northwest China[J]. Heating Ventilating & Air Conditioning, 2009, 39(9): 1-4.
5 谢晓云, 江亿. 蒸发冷却制备冷水流程的热学分析[J]. 暖通空调, 2011, 41(3): 65-76.
Xie X Y, Jiang Y. Thermological analysis of chilled water by evaporative cooling processes[J]. Heating Ventilating & Air Conditioning, 2011, 41(3): 65-76.
6 孙铁柱, 黄翔, 文力. 蒸发冷却与机械制冷复合高温冷水机组水系统配比问题分析[J]. 流体机械, 2011, 39(5): 81-84.
Sun T Z, Huang X, Wen L. Discussion of water-system ratio of evaporative cooling and mechanical refrigeration compound high-temperature chiller[J]. Fluid Machinery, 2011, 39(5): 81-84.
7 孙铁柱, 黄翔, 文力. 一种蒸发冷却与机械制冷复合制取高温冷水的新方法[J]. 制冷, 2010, 29(4): 12-15.
Sun T Z, Huang X, Wen L.The new method of evaporative cooling and the machinery refrigeration composite system taking the high temperature cold water[J]. Refrigeration, 2010, 29(4): 12-15.
8 孙铁柱, 黄翔, 文力. 蒸发冷却与机械制冷复合高温冷水机组初探[J]. 化工学报, 2010, 61: 137-141.
Sun T Z, Huang X, Wen L. Discussion of evaporative cooling and mechanical refrigeration compound high-temperature chiller[J]. CIESC Journal, 2010, 61: 137-141.
9 孙铁柱. 蒸发冷却与机械制冷复合高温冷水的研究[D]. 西安: 西安工程大学, 2012.
Sun T Z. Study on evaporative cooling and mechanical refrigeration compound high-temperature chiller[D]. Xi an: Xi an Polytechnic University, 2012.
10 白延斌. 蒸发冷却与机械制冷复合高温冷水的研究[D]. 西安: 西安工程大学, 2013.
Bai Y B. Research the key performance parameters of evaporative cooling and mechanical refrigeration composite high temperature water chillers[D]. Xi an: Xi an Polytechnic University, 2013.
11 黄翔, 白延斌, 郝航, 等. 半集中式蒸发冷却空调系统特性的实验分析[J]. 化工学报, 2012, 63: 63-66.
Huang X, Bai Y B, Hao H, et al. Test analysis of semi-central evaporative cooling air conditioning system in office building[J]. CIESC Journal, 2012, 63: 63-66.
12 郝航. 模块化蒸发冷却冷水机组的设计与应用研究[D]. 西安: 西安工程大学, 2014.
Hao H. Design and apply research of modular evaporative cooling water chiller[D]. Xi an: Xi an Polytechnic University, 2014.
13 邱佳. 电厂空冷凝汽系统用闭式立管间接蒸发冷却冷水机组研究[D]. 西安: 西安工程大学, 2015.
Qin J. The research of power plant air condensing steam system with closed type stand pipe indirect evaporative chiller[D]. Xi an: Xi an Polytechnic University, 2015.
14 王兴兴. 干燥地区蒸发冷却温湿度独立控制系统工程应用研究[D]. 西安: 西安工程大学, 2017.
Wang X X.The research of evaporative cooling temperature and humidity independent control air conditioning system in dry areas[D]. Xi an: Xi an Polytechnic University, 2017.
15 杜冬阳. 露点蒸发冷却冷水机组在干燥地区的优化设计及应用研究[D]. 西安: 西安工程大学, 2018.
Du D Y. Optimization design and application of dew point indirect evaporative water chiller in dry areas[D]. Xi an: Xi an Polytechnic University, 2018.
16 耿志超. 干燥地区数据中心间接蒸发自然冷却空调系统的应用研究[D]. 西安: 西安工程大学, 2018.
Geng Z C. Study on the application of indirect evaporation free cooling air conditioning system in dry area data center [D]. Xi an: Xi an Polytechnic University, 2018.
17 Scofield C M, Weaver T S. Using wet-bulb economizers: data center cooling[J]. ASHRAE Journal, 2008, 50(8): 52-58.
18 Dunnavant K. Data center heat rejection[J]. ASHRAE Journal, 2011, 53(3): 44-54.
19 Niemann J, Bean J, Avelar V. Economizer modes of data center cooling systems[R]. APC White Paper: Schneider Electric. 2011.
20 Weerts B A, Gallaher D, Weaver R, et al. Green data center cooling: achieving 90% reduction: airside economization and unique indirect evaporative cooling[C]// Green Technologies Conference. Tulsa: IEEE, 2012: 1- 6.
21 Department of Energy U.S.. NSIDC data center: energy reduction strategies airside economization and unique indirect evaporative cooling[R]. Boulder, Nevada: U.S. Department of Energy, 2012.
22 Tozer R, Flucker S. Zero refrigeration for data centres in the USA[J]. ASHRAE Transactions, 2012, 118(2): 261-268.
23 Cho J, Lim T, Kim B S. Viability of datacenter cooling systems for energy efficiency in temperate or subtropical regions: case study[J]. Energy and Buildings, 2012, 55: 189-197.
24 Xuan Y M, Xiao F, Niu X F, et al. Research and application of evaporative cooling in China: a review (Ⅰ)—Research[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 3535-3546.
25 Xuan Y M, Xiao F, Niu X F, et al. Research and applications of evaporative cooling in China: a review (Ⅱ)—Systems and equipment[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 3523-3534.
26 王玉刚, 黄翔, 武俊梅. TIEC管内插入螺旋线强化一次空气传热的研究[J]. 纺织高校基础科学学报, 2005, 18(4): 385-388.
Wang Y G, Huang X, Wu J M. Study on strengthening primary air heat transfer by inserting spiral line in TIEC tube[J]. Basic Sciences Jouanal of Textile Universities, 2005, 18(4): 385-388.
27 樊丽娟. 管式间接蒸发冷却器亲水性能的实验研究[D]. 西安: 西安工程大学, 2009.
Fan L J. Experimental research on hydrophilic property of tubular indirect evaporative cooler[D]. Xi an: Xi an Polytechnic University, 2009.
28 Wang F H, Sun T Z, Huang X, et al. Experimental research on a novel porous ceramic tube type indirect evaporative cooler[J]. Applied Thermal Engineering, 2017, 125: 1191-1199.
29 褚俊杰, 黄翔, 孙铁柱, 等. 露点间接蒸发冷却器湿通道侧材料亲水性研究[J]. 棉纺织技术, 2018, (1): 40-44.
Chu J J, Huang X, Sun T Z, et al. Hydrophilic study of dew point indirect evaporative cooler wet channel side material[J]. Cotton Textile Technology, 2018, (1): 40-44.
30 Duan Z, Zhao X D, Li J. Design, fabrication and performance evaluation of a compact regenerative evaporative cooler: towards low energy cooling for buildings[J]. Energy, 2017, 140: 506-519.
31 中华人民共和国工业和信息化部, 中华人民共和国住房和城乡建设部. 数据中心设计规范: GB50174-2017[S]. 北京: 中国计划出版社, 2017.
Ministry of Industry and Information Technology, Ministry of Housing and Urban-Rural Development of the People s Republic of China. Data Center Design Specification: GB50174-2017[S]. Beijing: China Planning Press, 2017.
[1] 李阳, 常守金, 胡海涛, 孙浩然, 赖展程, 刘善敏. 飞行器机载精密仪器温控系统性能的实验研究[J]. 化工学报, 2020, 71(S1): 77-82.
[2] 詹宏波, 郑文远, 文涛, 张大林. 微尺度通道内R134a的冷凝传热实验研究[J]. 化工学报, 2020, 71(S1): 83-89.
[3] 刘秀峰, 张诗, 周志杰, 郑浩, 王成泽, 时红远, 李梦杰. 换热器结构优化与换热性能评价指标研究[J]. 化工学报, 2020, 71(S1): 98-105.
[4] 刘子初, 全贞花, 赵耀华, 靖赫然, 姚孟良, 刘新. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128.
[5] 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157.
[6] 孙苏芮, 王德昌, 张金翠, 刘振, 李延辉. 膜蓄能器放能过程的传热传质特性分析[J]. 化工学报, 2020, 71(S1): 158-165.
[7] 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171.
[8] 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186.
[9] 陈玮玮, 方贤德, 鹿世化, 林福建, 张烨. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211.
[10] 王瑞琪, 高赞军, 杨华, 胡文超, 詹宏波. 机载冷源参数对蒸发循环系统性能的影响[J]. 化工学报, 2020, 71(S1): 212-219.
[11] 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37.
[12] 张晨宇, 王宁, 徐洪涛, 张剑飞, 曹萌. 基于相变材料的太阳能PV/T系统性能[J]. 化工学报, 2020, 71(S1): 361-367.
[13] 韩建年, 王刚, 杨梅, 刘美佳, 高成地, 高金森. 费托蜡催化裂化反应生产清洁汽油的热力学分析[J]. 化工学报, 2020, 71(S1): 38-45.
[14] 郭良, 李恒, 庞丽萍, 毛晓东, 赵竞全, 杨晓东. 高速运载器发电/制冷联合系统稳态性能[J]. 化工学报, 2020, 71(S1): 391-396.
[15] 王栋, 刘雅如, 陈卓, 寇遵丽, 鲁月红. 充注量对小型CO2水源热泵热水器性能的影响及其最佳值的确定[J]. 化工学报, 2020, 71(S1): 397-403.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .