化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 236-244.doi: 10.11949/0438-1157.20191210
Jianpei CHANG(),Xiang HUANG(
),Miaomiao AN,Zhaoyang LI
摘要:
总结了蒸发冷却冷水机组结构类型和工作原理,理论和实测验证了间接蒸发冷却的湿通道侧发生的并非绝热等焓直接蒸发冷却。根据对间接预冷式蒸发冷却冷水机组的性能测试分析,间接蒸发冷却器的湿球效率在41%~92%之间,立管、板管、露点间接蒸发冷却器比卧管间接蒸发冷却器效率高,间接预冷式蒸发冷却冷水机组制备冷水可达到亚湿球温度,制备冷水温度受间接蒸发冷却器效率、填料塔内气水比、外热源影响。以间接预冷式蒸发冷却冷水机组、机械制冷冷水机组、乙二醇自然冷却为冷源的数据中心空调系统,水侧蒸发冷却与乙二醇自然冷却应用在乌鲁木齐市、北京市、上海市的时间分别为8736、6261、4708 h,相比机械制冷的全年节电率分别为62%、53%、46%。
中图分类号:
1 | 黄翔. 空调工程[M]. 3版. 北京: 机械工业出版社, 2017: 458. |
Huang X. Air-conditioning Engineering[M]. 3rd ed. Beijing: China Machine Press, 2017: 458. | |
2 | 黄翔. 蒸发冷却空调原理与设备[M]. 北京: 机械工业出版社, 2019: 269. |
Huang X. Evaporative Cooling Air Conditioning Principle and Equipment[M]. Beijing: China Machine Press, 2019: 269. | |
3 | 谢晓云, 江亿, 刘拴强, 等. 间接蒸发冷水机组设计开发及性能分析[J]. 暖通空调, 2007, 37(7): 66-70. |
Xie X Y, Jiang Y, Liu S Q, et al. Design and development of an indirect evaporative water chiller[J]. Heating Ventilating & Air Conditioning, 2007, 37(7): 66-70. | |
4 | 江亿, 谢晓云, 于向阳. 间接蒸发冷却技术——中国西北地区可再生干空气资源的高效应用[J]. 暖通空调, 2009, 39(9): 1-4. |
Jiang Y, Xie X Y, Yu X Y. Indirect evaporative cooling technology: high-performance application of renewable dry air energy in northwest China[J]. Heating Ventilating & Air Conditioning, 2009, 39(9): 1-4. | |
5 | 谢晓云, 江亿. 蒸发冷却制备冷水流程的热学分析[J]. 暖通空调, 2011, 41(3): 65-76. |
Xie X Y, Jiang Y. Thermological analysis of chilled water by evaporative cooling processes[J]. Heating Ventilating & Air Conditioning, 2011, 41(3): 65-76. | |
6 | 孙铁柱, 黄翔, 文力. 蒸发冷却与机械制冷复合高温冷水机组水系统配比问题分析[J]. 流体机械, 2011, 39(5): 81-84. |
Sun T Z, Huang X, Wen L. Discussion of water-system ratio of evaporative cooling and mechanical refrigeration compound high-temperature chiller[J]. Fluid Machinery, 2011, 39(5): 81-84. | |
7 | 孙铁柱, 黄翔, 文力. 一种蒸发冷却与机械制冷复合制取高温冷水的新方法[J]. 制冷, 2010, 29(4): 12-15. |
Sun T Z, Huang X, Wen L.The new method of evaporative cooling and the machinery refrigeration composite system taking the high temperature cold water[J]. Refrigeration, 2010, 29(4): 12-15. | |
8 | 孙铁柱, 黄翔, 文力. 蒸发冷却与机械制冷复合高温冷水机组初探[J]. 化工学报, 2010, 61: 137-141. |
Sun T Z, Huang X, Wen L. Discussion of evaporative cooling and mechanical refrigeration compound high-temperature chiller[J]. CIESC Journal, 2010, 61: 137-141. | |
9 | 孙铁柱. 蒸发冷却与机械制冷复合高温冷水的研究[D]. 西安: 西安工程大学, 2012. |
Sun T Z. Study on evaporative cooling and mechanical refrigeration compound high-temperature chiller[D]. Xi an: Xi an Polytechnic University, 2012. | |
10 | 白延斌. 蒸发冷却与机械制冷复合高温冷水的研究[D]. 西安: 西安工程大学, 2013. |
Bai Y B. Research the key performance parameters of evaporative cooling and mechanical refrigeration composite high temperature water chillers[D]. Xi an: Xi an Polytechnic University, 2013. | |
11 | 黄翔, 白延斌, 郝航, 等. 半集中式蒸发冷却空调系统特性的实验分析[J]. 化工学报, 2012, 63: 63-66. |
Huang X, Bai Y B, Hao H, et al. Test analysis of semi-central evaporative cooling air conditioning system in office building[J]. CIESC Journal, 2012, 63: 63-66. | |
12 | 郝航. 模块化蒸发冷却冷水机组的设计与应用研究[D]. 西安: 西安工程大学, 2014. |
Hao H. Design and apply research of modular evaporative cooling water chiller[D]. Xi an: Xi an Polytechnic University, 2014. | |
13 | 邱佳. 电厂空冷凝汽系统用闭式立管间接蒸发冷却冷水机组研究[D]. 西安: 西安工程大学, 2015. |
Qin J. The research of power plant air condensing steam system with closed type stand pipe indirect evaporative chiller[D]. Xi an: Xi an Polytechnic University, 2015. | |
14 | 王兴兴. 干燥地区蒸发冷却温湿度独立控制系统工程应用研究[D]. 西安: 西安工程大学, 2017. |
Wang X X.The research of evaporative cooling temperature and humidity independent control air conditioning system in dry areas[D]. Xi an: Xi an Polytechnic University, 2017. | |
15 | 杜冬阳. 露点蒸发冷却冷水机组在干燥地区的优化设计及应用研究[D]. 西安: 西安工程大学, 2018. |
Du D Y. Optimization design and application of dew point indirect evaporative water chiller in dry areas[D]. Xi an: Xi an Polytechnic University, 2018. | |
16 | 耿志超. 干燥地区数据中心间接蒸发自然冷却空调系统的应用研究[D]. 西安: 西安工程大学, 2018. |
Geng Z C. Study on the application of indirect evaporation free cooling air conditioning system in dry area data center [D]. Xi an: Xi an Polytechnic University, 2018. | |
17 | Scofield C M, Weaver T S. Using wet-bulb economizers: data center cooling[J]. ASHRAE Journal, 2008, 50(8): 52-58. |
18 | Dunnavant K. Data center heat rejection[J]. ASHRAE Journal, 2011, 53(3): 44-54. |
19 | Niemann J, Bean J, Avelar V. Economizer modes of data center cooling systems[R]. APC White Paper: Schneider Electric. 2011. |
20 | Weerts B A, Gallaher D, Weaver R, et al. Green data center cooling: achieving 90% reduction: airside economization and unique indirect evaporative cooling[C]// Green Technologies Conference. Tulsa: IEEE, 2012: 1- 6. |
21 | Department of Energy U.S.. NSIDC data center: energy reduction strategies airside economization and unique indirect evaporative cooling[R]. Boulder, Nevada: U.S. Department of Energy, 2012. |
22 | Tozer R, Flucker S. Zero refrigeration for data centres in the USA[J]. ASHRAE Transactions, 2012, 118(2): 261-268. |
23 | Cho J, Lim T, Kim B S. Viability of datacenter cooling systems for energy efficiency in temperate or subtropical regions: case study[J]. Energy and Buildings, 2012, 55: 189-197. |
24 | Xuan Y M, Xiao F, Niu X F, et al. Research and application of evaporative cooling in China: a review (Ⅰ)—Research[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 3535-3546. |
25 | Xuan Y M, Xiao F, Niu X F, et al. Research and applications of evaporative cooling in China: a review (Ⅱ)—Systems and equipment[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 3523-3534. |
26 | 王玉刚, 黄翔, 武俊梅. TIEC管内插入螺旋线强化一次空气传热的研究[J]. 纺织高校基础科学学报, 2005, 18(4): 385-388. |
Wang Y G, Huang X, Wu J M. Study on strengthening primary air heat transfer by inserting spiral line in TIEC tube[J]. Basic Sciences Jouanal of Textile Universities, 2005, 18(4): 385-388. | |
27 | 樊丽娟. 管式间接蒸发冷却器亲水性能的实验研究[D]. 西安: 西安工程大学, 2009. |
Fan L J. Experimental research on hydrophilic property of tubular indirect evaporative cooler[D]. Xi an: Xi an Polytechnic University, 2009. | |
28 | Wang F H, Sun T Z, Huang X, et al. Experimental research on a novel porous ceramic tube type indirect evaporative cooler[J]. Applied Thermal Engineering, 2017, 125: 1191-1199. |
29 | 褚俊杰, 黄翔, 孙铁柱, 等. 露点间接蒸发冷却器湿通道侧材料亲水性研究[J]. 棉纺织技术, 2018, (1): 40-44. |
Chu J J, Huang X, Sun T Z, et al. Hydrophilic study of dew point indirect evaporative cooler wet channel side material[J]. Cotton Textile Technology, 2018, (1): 40-44. | |
30 | Duan Z, Zhao X D, Li J. Design, fabrication and performance evaluation of a compact regenerative evaporative cooler: towards low energy cooling for buildings[J]. Energy, 2017, 140: 506-519. |
31 | 中华人民共和国工业和信息化部, 中华人民共和国住房和城乡建设部. 数据中心设计规范: GB50174-2017[S]. 北京: 中国计划出版社, 2017. |
Ministry of Industry and Information Technology, Ministry of Housing and Urban-Rural Development of the People s Republic of China. Data Center Design Specification: GB50174-2017[S]. Beijing: China Planning Press, 2017. |
[1] | 李阳, 常守金, 胡海涛, 孙浩然, 赖展程, 刘善敏. 飞行器机载精密仪器温控系统性能的实验研究[J]. 化工学报, 2020, 71(S1): 77-82. |
[2] | 詹宏波, 郑文远, 文涛, 张大林. 微尺度通道内R134a的冷凝传热实验研究[J]. 化工学报, 2020, 71(S1): 83-89. |
[3] | 刘秀峰, 张诗, 周志杰, 郑浩, 王成泽, 时红远, 李梦杰. 换热器结构优化与换热性能评价指标研究[J]. 化工学报, 2020, 71(S1): 98-105. |
[4] | 刘子初, 全贞花, 赵耀华, 靖赫然, 姚孟良, 刘新. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128. |
[5] | 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157. |
[6] | 孙苏芮, 王德昌, 张金翠, 刘振, 李延辉. 膜蓄能器放能过程的传热传质特性分析[J]. 化工学报, 2020, 71(S1): 158-165. |
[7] | 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171. |
[8] | 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186. |
[9] | 陈玮玮, 方贤德, 鹿世化, 林福建, 张烨. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211. |
[10] | 王瑞琪, 高赞军, 杨华, 胡文超, 詹宏波. 机载冷源参数对蒸发循环系统性能的影响[J]. 化工学报, 2020, 71(S1): 212-219. |
[11] | 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37. |
[12] | 张晨宇, 王宁, 徐洪涛, 张剑飞, 曹萌. 基于相变材料的太阳能PV/T系统性能[J]. 化工学报, 2020, 71(S1): 361-367. |
[13] | 韩建年, 王刚, 杨梅, 刘美佳, 高成地, 高金森. 费托蜡催化裂化反应生产清洁汽油的热力学分析[J]. 化工学报, 2020, 71(S1): 38-45. |
[14] | 郭良, 李恒, 庞丽萍, 毛晓东, 赵竞全, 杨晓东. 高速运载器发电/制冷联合系统稳态性能[J]. 化工学报, 2020, 71(S1): 391-396. |
[15] | 王栋, 刘雅如, 陈卓, 寇遵丽, 鲁月红. 充注量对小型CO2水源热泵热水器性能的影响及其最佳值的确定[J]. 化工学报, 2020, 71(S1): 397-403. |
|