化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 158-165.doi: 10.11949/0438-1157.20191209

• 流体力学与传递现象 • 上一篇    下一篇

膜蓄能器放能过程的传热传质特性分析

孙苏芮(),王德昌(),张金翠,刘振,李延辉   

  1. 青岛大学机电工程学院,山东 青岛 266071
  • 收稿日期:2019-10-23 修回日期:2019-11-21 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 王德昌 E-mail:17805428091@163.com;wdechang@163.com
  • 作者简介:孙苏芮(1997—),女,硕士研究生,17805428091@163.com
  • 基金资助:
    国家自然科学基金项目(51876094)

Analysis of heat and mass transfer characteristics during energy discharging in membrane energy accumulator

Surui SUN(),Dechang WANG(),Jincui ZHANG,Zhen LIU,Yanhui LI   

  1. College of Electrical and Mechanical Engineering, Qingdao University, Qingdao 266071, Shandong, China
  • Received:2019-10-23 Revised:2019-11-21 Online:2020-04-25 Published:2020-05-22
  • Contact: Dechang WANG E-mail:17805428091@163.com;wdechang@163.com

摘要:

膜构架蓄能器是以中空纤维膜为基本结构,不仅能够实现蓄能,同时能够解决溴化锂溶液浓度差蓄能器中结晶后的放能困难的问题。搭建了膜蓄能器放能过程传热传质实验测试系统,建立了应用于太阳能吸收式制冷系统中的膜架构蓄能器传热传质的三维数学模型,并利用 CFD 软件进行了求解。将计算结果与实验结果相比较,验证了该三维非稳态数学模型的可靠性。实验和仿真结果表明,质量分数为70% 的溴化锂溶液的水蒸气分子平均传质速率比质量分数为60%的溶液高44.03%;当蒸发温度从4.5℃提高到12.3℃时,水蒸气分子的平均传质速率将提高108.34%;当膜通道的有效长度从80 mm减少到30 mm时,水蒸气分子的传质速率会提高40.77%。

关键词: 膜蓄能器, 传热, 传质, 膜, 实验与仿真

Abstract:

Concentration difference nondestructive energy storage can convert heat energy into the chemical potential energy of the solution. It can be used in solar lithium bromide absorption refrigeration system to improve the working stability of the system effectively. However, when the concentration of the solution is too high or the operating temperature is too low, it s easy to precipitate and crystallize, which will cause difficulty in putting energy. The membrane energy accumulator can solve the problem that it is difficult to release energy when crystallization occurs in the lithium bromide concentration difference accumulator. In order to analyze the internal heat and mass transfer characteristics of the membrane energy accumulator, the experimental test system of heat and mass transfer in the energy release process of the membrane energy accumulator is set up. And the mathematical model of heat and mass transfer of the membrane energy accumulator applied in the solar absorption refrigeration system is established. The CFD software is used to solve the three dimensional mathematical model. Comparing the calculated results with the experimental results, the mass transfer deviation of the water vapor molecule is less than 6%, and the solution temperature deviation is less than 15%, the reliability of the unsteady mathematical model is verified and the model is used as an analytical tool for heat and mass transfer in the energy release process of the membrane energy accumulator. According to the experimental and simulation results, the average mass transfer efficiency of 70% MS (mass fraction lithium) bromide solution is improved by 44.03% compared with 60% MS solution. When the evaporation temperature increases from 4.5℃ to 12.3℃, the average mass transfer efficiency will increase by 108.34%. And the mass transfer efficiency is improved by 40.77% with the decrease of effective length from 80 mm to 30 mm. The average mass transfer efficiency of water vapor can be improved by increasing the initial concentration, evaporation temperature, or reducing the effective length of the membrane channel.

Key words: membrane energy accumulator, heat transfer, mass transfer, membranes, experiment and simulation

中图分类号: 

  • TB 61+1

图1

实验测试系统"

表1

传感器规格参数"

传感器型号量程精度
温度传感器Pt-100-50~300℃±0.2℃
称重传感器EVT-18C0~1 kg±0.02%
压力传感器PTX 5072-TC-A3-CA-H0-PA0~1 bar±0.04%

图2

膜构架蓄能器的结构"

表2

膜组件参数"

膜组件编号有效长度Leff/mm膜间距s/mm有效面积S/m2
1503.60.06625
2803.60.106
31203.60.158
41603.60.211

图3

水蒸气传质量的实验值与计算值对比"

图4

溶液平均温升的实验值与计算值对比"

图5

蒸发温度和水蒸气传质量随时间的变化"

图6

溶液浓度随蒸发温度的变化"

图7

不同膜有效长度下水蒸气传质量"

图8

不同膜通道有效长度时水蒸气传质质量变化"

图9

不同有效长度的单位膜表面积水蒸气传质量变化"

1 Jowzi M, Veysi F, Sadeghi G. Novel experimental approaches to investigate distribution of solar insolation around the tubes in evacuated tube solar collectors[J]. Renewable Energy, 2018, 127: 724-732.
2 Anyanwu E E, Ogueke N V. Thermodynamic design procedure for solid absorption solar refrigeration[J]. Renewable Energy, 2005, 30(1): 81-96.
3 Alizadeh S. Multi-pressure absorption cycles in solar refrigeration: a technical and economical study[J]. Solar Energy, 2000, 69(1): 37-44.
4 Rivera C O, Rivera W. Modeling of an intermittent solar absorption refrigeration system operating with ammonia-lithium nitrate mixture[J]. Solar Energy Materials and Solar Cells, 2003, 76(3): 417-427.
5 陈松江, 余晓明, 王正辉, 等. 一种太阳能-沼气驱动的吸收式制冷空调系统[J]. 制冷技术, 2012, 40(10): 65-69.
Chen S J, Yu X M, Wang Z H, et al. An absorption refrigeration air-conditioning system driven by the solar energy and biogas[J]. Cryogenics and Superconductivity, 2012, 40(10): 65-69.
6 Su B S, Han W, Jin H G. Proposal and assessment of a novel integrated CCHP system with biogas steam reforming using solar energy[J]. Applied Energy, 2017, 206(15): 1-11.
7 Xu S M, Huang X D, Du R. An investigation of the solar powered absorption refrigeration on system with advanced energy storage technology[J]. Solar Energy, 2011, 85(9): 1794-1804.
8 傅杰, 蒋绿林, 卢涛, 等. 相变储能太阳能热泵系统的试验研究[J]. 可再生能源, 2018, 36(1): 22-26.
Fu J, Jiang L L, Lu T, et al. Experimental study on solar heat pump system of phase change energy storage[J]. Renewable Energy Resources, 2018, 36(1): 22-26.
9 陈源, 丁静, 陆建峰, 等. 太阳能热化学混合储能装置的储热性能[J]. 兰州理工大学学报, 2013, 39(5): 50-53.
Chen Y, Ding J, Lu J F, et al. Thermal storage performance of solar thermal chemical hybrid energy storage device[J]. Journal of Lanzhou University of Technology, 2013, 39(5): 50-53.
10 Liu H, Tsoukpoe K E N, Nolwenn L P. Evaluation of a seasonal storage system of solar energy for house heating using different absorption couples[J]. Energy Conversion and Management, 2011, 52(6): 2427-2436.
11 夏梦心, 徐士鸣. 溶液蓄能制冷与压缩制冷复合循环工作特性分析[J]. 节能, 2006, (12): 8-12.
Xia M X, Xu S M. Analysis on the working characteristics of complex cycle of solution storage refrigeration and compression refrigeration[J]. Energy Conservation, 2006, (12): 8-12.
12 黄晓东, 徐士鸣. 溶液浓度差蓄能技术在太阳能蓄能制冷中的应用[J]. 太阳能学报, 2012, 33(1): 141-147.
Huang X D, Xu S M. Application of solution concentration differential energy storage technology in solar energy storage refrigeration[J]. Acta Energiae Solaris Sinica, 2012, 33(1): 141-147.
13 徐士鸣, 张莉, 李革. 以水-溴化锂溶液为工质的制冷/制热潜能储存系统特性研究[J]. 大连理工大学学报, 2005, 45(2): 194-200.
Xu S M, Zhang L, Li G. Study on the characteristics of refrigeration/heating potential storage system with water-lithium bromide solution as working quality[J]. Journal of Dalian University of Technology, 2005, 45(1): 194-200.
14 Zhang X L, Li M Z, Shi W X, et al. Experimental investigation on charging and discharging performance of absorption thermal energy storage system[J]. Energy Conversion and Management, 2014, 85: 425-434.
15 Tsoukpoe K E N, Perier-Muzet M, Le Pierres N, et al. Thermodynamic study of a LiBr-H2O absorption process for solar heat storage with crystallization of the solution[J]. Solar Energy, 2014, 104: 2-15.
16 Wang D C, Liu Z, Zhang S H, et al. Investigation of heat and mass transfer characteristics during energy discharge in an energy storage unit using hollow fiber membranes[J]. International Journal of Heat and Mass Transfer, 2018, 117: 559-570.
17 Ibrahim N I, Al-Sulaiman F A, Ani F N. Solar absorption systems with integrated absorption energy storage—a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1602-1610.
18 Lefebvre E, Fan L, Gagniere E, et al. Lithium bromide crystallization in water applied to an inter-seasonal heat storage process[J]. Chemical Engineering Science, 2015, 133(8): 2-8.
19 Xu S M, Xu C H, Zhang L, et al. Numerical simulation of an advanced energy storage system using H2O-LiBr as working fluid(Ⅱ): System simulation and analysis[J]. International Journal of Refrigeration, 2007, 30(2): 364-376.
20 高洪涛, 王小路. 不同溴化锂溶液浓度及添加剂对气泡泵工作特性影响的实验研究[J]. 工程热物理学报, 2013, 34(1): 19-21.
Gao H T, Wang X L. Experimental study on the effect of different concentration of lithium bromide solution and additives on the working characteristics of bubble pump[J]. Journal of Engineering Thermophysics, 2013, 34(1): 19-21.
21 Tsoukpoe K E N, Le Pierres N, Luo L. Experimentation of a LiBr-H2O absorption process for long-term solar thermal storage: prototype design and first results[J]. Energy, 2013, 53(1): 179-198.
22 Liu H, Tsoukpoe K E N, Le Pierres N, et al. Evaluation of a seasonal storage of solar energy for house heating using different absorption couples[J]. Energy Conversion and Management, 2011, 52(6): 2427-2436.
23 秦晓东, 王德昌, 刘振, 等. 平膜储能器溶晶过程实验研究[J]. 制冷学报, 2017, 38(6): 27-33.
Qin X D, Wang D C, Liu Z, et al. Experimental study on dissolved crystal process of flat film energy accumulator[J]. Journal of Refrigeration, 2017, 38(6): 27-33.
24 王赞社, 胡俊涛, 顾兆林, 等. 膜蒸馏技术在溶液蓄能中的应用[J]. 制冷学报, 2018, 39(3): 64-69.
Wang Z S, Hu J T, Gu Z L, et al. Application of membrane distillation technology in solution storage[J]. Journal of Refrigeration, 2018, 39(3): 64-69.
25 Wang Z S, Gu Z L, Feng S Y, et al. Application of vacuum membrane distillation to lithium bromide absorption refrigeration system[J]. International Journal of Refrigeration, 2009, 32(7): 1587-1596.
26 刘振, 王德昌, 田小亮, 等. 平膜和中空纤维膜储能器放能特性分析[J]. 工程热物理学报, 2019, 40(5): 38-45.
Liu Z, Wang D C, Tian X L, et al. Analysis of energy discharge characteristics of flat film and hollow fiber membrane energy storage[J]. Journal of Engineering Thermophysics, 2019, 40(5): 38-45.
27 李赛男. 溴化锂吸收式制冷中膜蓄能器传热传质特性分析[J]. 科技视界, 2016, (5): 154-159.
Li S N. Analysis of heat and mass transfer characteristics of membrane energy accumulator in lithium bromide absorption refrigeration[J]. Science & Technology Vision, 2016, (5): 154-159.
28 Liu C Z, WU J Q, Ren Q L, et al. Comparative study on the effect of RF and DBD plasma treatment on PTFE surface modification[J]. Materials Chemistry and Physics, 2014, 85(2/3): 340-346.
29 Lawson K W, Lloyd D R. Membrane distillation (Ⅱ): Direct contact MD[J]. Journal of Membrane Science, 1996, 120(1): 123-133.
30 王可达, 赵之平, 陈康成, 等. 膜蒸馏过程传递机理研究进展(Ⅳ): 渗透膜蒸馏[J]. 膜科学与技术, 2013, 33(2): 118-124.
Wang K D, Zhao Z P, Chen K C, et al. Research progress on transfer mechanism of membrane distillation process (Ⅳ): Membrane distillation [J]. Membrane Science and Technology, 2013, 33(2): 118-124.
[1] 刘子初, 全贞花, 赵耀华, 靖赫然, 姚孟良, 刘新. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128.
[2] 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157.
[3] 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171.
[4] 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186.
[5] 陈玮玮, 方贤德, 鹿世化, 林福建, 张烨. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211.
[6] 王瑞琪, 高赞军, 杨华, 胡文超, 詹宏波. 机载冷源参数对蒸发循环系统性能的影响[J]. 化工学报, 2020, 71(S1): 212-219.
[7] 常健佩, 黄翔, 安苗苗, 李朝阳. 蒸发冷却冷水机组的原理、性能与适用性分析[J]. 化工学报, 2020, 71(S1): 236-244.
[8] 滕达, 李铁林, 李昂, 安连锁, 沈国清, 张世平. 单通道陶瓷膜管低压透水性能实验分析[J]. 化工学报, 2020, 71(S1): 261-271.
[9] 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37.
[10] 陆俊杰, 张炜, 谢方民, 焦永峰. 一种自适应柱状密封气膜特性分析[J]. 化工学报, 2020, 71(S1): 346-354.
[11] 张晨宇, 王宁, 徐洪涛, 张剑飞, 曹萌. 基于相变材料的太阳能PV/T系统性能[J]. 化工学报, 2020, 71(S1): 361-367.
[12] 郭良, 李恒, 庞丽萍, 毛晓东, 赵竞全, 杨晓东. 高速运载器发电/制冷联合系统稳态性能[J]. 化工学报, 2020, 71(S1): 391-396.
[13] 郭栋才, 盛强, 杨鹏, 徐捷, 王泽, 杨波, 曹娇坤. 基于热电效应的高效环控系统[J]. 化工学报, 2020, 71(S1): 404-410.
[14] 马德胜, 庞丽萍, 毛晓东, 董素君. 机载综合环控系统的热管理[J]. 化工学报, 2020, 71(S1): 436-440.
[15] 孙艳, 刘士涛, 邓尚, 余丽芸, 吕东伟, 马军, 刘献斌. 负载羧基化球状介孔纳米颗粒TFN膜的研究[J]. 化工学报, 2020, 71(S1): 454-460.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .