化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1528-1539.doi: 10.11949/0438-1157.20191207

• 流体力学与传递现象 • 上一篇    下一篇

基于粗糙颗粒动理学流化床内颗粒与幂律流体两相流动特性的数值模拟研究

田瑞超(),王淑彦(),邵宝力,李好婷,王玉琳   

  1. 东北石油大学石油工程学院,黑龙江 大庆 163318
  • 收稿日期:2019-10-22 修回日期:2020-01-29 出版日期:2020-04-05 发布日期:2020-02-10
  • 通讯作者: 王淑彦 E-mail:tianruichao@stu.nepu.edu.cn;wangshuyan@nepu.edu.cn
  • 作者简介:田瑞超(1993—),女,博士研究生, tianruichao@stu.nepu.edu.cn
  • 基金资助:
    国家自然科学基金项目(21676051);黑龙江省自然科学基金重点项目(ZD2019E002)

Numerical simulation of hydrodynamic characteristics of particles and power-law fluid in fluidized beds using kinetic theory of rough spheres

Ruichao TIAN(),Shuyan WANG(),Baoli SHAO,Haoting LI,Yulin WANG   

  1. School of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
  • Received:2019-10-22 Revised:2020-01-29 Online:2020-04-05 Published:2020-02-10
  • Contact: Shuyan WANG E-mail:tianruichao@stu.nepu.edu.cn;wangshuyan@nepu.edu.cn

摘要:

在颗粒动理学理论(KTGF)的基础上,通过引入表征粗糙颗粒摩擦和切向非弹性的切向弹性恢复系数β,以及综合反映颗粒平动和旋转运动脉动强度的颗粒拟总温e0,结合输运理论建立了考虑颗粒旋转作用的颗粒相质量、动量和颗粒拟总温守恒方程。并在求解了同时具有平动和旋转运动的能量耗散和颗粒相应力等参数的前提下提出了颗粒相压力、剪切黏度和能量耗散等本构关系式以及边界条件,最终得出了粗糙颗粒动理学理论(KTRS)。通过改变液相的流变特性,分析了幂律流变模型中流动指数n和稠度系数Kl对流化床内流固两相流动特性的影响,模拟结果表明:随着流动指数和稠度系数的增大,液相湍动能耗散率逐渐增大,而颗粒相压力逐渐减小,颗粒旋转先增大后减小。

关键词: 颗粒旋转, 粗糙颗粒动理学, 非牛顿流体, 流化床, 两相流, 数值模拟

Abstract:

On the basis of the traditional kinetic theory of granular flow (KTGF), the tangential restitution coefficient β, which characterizes the surface friction and tangential inelasticity of rough particles, and the total granular temperature e0, which synthetically reflects the fluctuating intensity of the translational and rotational motion of particles, are introduced. Combining with the transport theory, the conservation equations of particle phase mass, momentum and total granular temperature considering particle rotation are established. Under the condition of solving the parameters of energy dissipation and particle phase stress with both translational and rotational motions, the constitutive relations of solids pressure, shear viscosity and energy dissipation, as well as the boundary conditions, are proposed. Finally, the kinetic theory of rough spheres (KTRS) is obtained. By changing the fluid rheological properties, the effects of flow index n and consistency coefficient Kl in the power-law rheology model on the hydrodynamic characteristics in a fluidized bed are studied respectively. The simulation results show that with the increase of the flow index and the consistency coefficient, the energy dissipation rate of the liquid phase turbulence gradually increases, while the particle phase pressure gradually decreases, and the particle rotation increases first and then decreases.

Key words: particle rotation, kinetic theory of rough spheres, non-Newtonian fluid, fluidized bed, two-phase flow, numerical simulation

中图分类号: 

  • TQ 018

表1

文献[32,33]实验及本文模拟参数"

参数

文献[32]

实验值

本文对应的模拟值文献[33] 实验值本文对应的模拟值
颗粒密度/(kg/m3)2258225880308030
颗粒直径/m0.004~0.0050.00460.0030.003
液体密度/(kg/m3)10011000
液体流动指数0.820.8211
液体稠度系数/(Pa·sn)

0.013

0.013

1×10-3

床高/m2.02.00.60.6
床宽/m0.090.090.080.08
初始颗粒浓度0.5780.5780.60.6
初始床层高度/m0.120.120.240.24
恢复系数0.950.95
壁面恢复系数0.90.9
切向恢复系数-0.2-0.2
壁面摩擦系数0.20.2

图1

床层动态高度随液体速度的分布"

图2

床层内瞬时液体黏度分布"

图3

瞬时床层内液体体积分数分布"

图4

不同流动指数下流化床内瞬时颗粒浓度分布图及速度矢量图"

图5

不同流动指数下颗粒聚团尺寸随床高的变化"

图6

不同流动指数下时均颗粒拟温度随颗粒浓度的变化"

图7

不同流动指数下颗粒压力随颗粒浓度的变化"

图8

不同流动指数下液相湍动能耗散率随颗粒浓度的变化"

图9

不同稠度系数下流化床内瞬时颗粒浓度分布图及速度矢量图"

图10

不同稠度系数下颗粒聚团尺寸随床高的变化"

图11

不同稠度系数下时均颗粒拟温度随颗粒浓度的变化"

图12

不同稠度系数下时均颗粒压力随颗粒浓度的变化"

图13

不同稠度系数下时均液相湍动能耗散率随颗粒浓度的变化"

1 Kato Y, Ishimaru A, Kadone H, et al. Characteristics of bubble column with a simultaneous gas-liquid injection nozzle[J]. Kagaku Kogaku Ronbunshu, 1980, 6(6): 614-620.
2 Muroyama K, Fukuma M, Yasunishi A. Wall-to-bed heat transfer in liquid-solid and gas-liquid-solid fluidized beds(Ⅰ): Liquid-solid fluidized beds[J]. The Canadian Journal of Chemical Engineering, 1986, 64(3): 399-408.
3 Kang Y, Kim S D. Heat transfer characteristics in liquid-fluidized beds[J]. Korean Chemical Engineering Research, 1987, 25(1): 81-81.
4 Liang W, Yu Z, Jin Y, et al. Synthesis of linear alkylbenzene in a liquid-solid circulating fluidized bed reactor[J]. Journal of Chemical Technology & Biotechnology, 1995, 62(1): 98-102.
5 李洪钟, 郭慕孙. 回眸与展望流态化科学与技术[J]. 化工学报, 2013, 64(1): 52-62.
Li H Z, Kwauk M S. Review and prospect of fluidization science and technology[J]. CIESC Journal, 2013, 64(1): 52-62.
6 马红钦, 朱慧铭, 谭欣, 等. 脱硅中液固循环流化床清洁传热[J]. 化工学报, 2003, 54(3): 288-293.
Ma H Q, Zhu H M, Tan X, et al. Cleaning heat transfer of desiliconization heat exchange with liquid-solid fluidized bed[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(3): 288-293.
7 Lan Q, Zhu J X, Bassi A S, et al. Continuous protein recovery using a liquid-solid circulating fluidized bed ion exchange system: modelling and experimental studies[J]. The Canadian Journal of Chemical Engineering, 2000, 78(5): 858-866.
8 Reddy R K, Sathe M J, Joshi J B, et al. Recent developments in experimental (PIV) and numerical (DNS) investigation of solid-liquid fluidized beds[J]. Chemical Engineering Science, 2013, 92: 1-12.
9 Chen Y M, Jang C S, Cai P, et al. On the formation and disintegration of particle clusters in a liquid-solid transport bed[J]. Chemical Engineering Science, 1991, 46(9): 2253-2268.
10 Di Felice R. Hydrodynamics of liquid fluidisation[J]. Chemical Engineering Science, 1995, 50(8): 1213-1245.
11 Kmieć A. Particle distributions and dynamics of particle movement in solid-liquid fluidized beds[J]. The Chemical Engineering Journal, 1978, 15(1): 1-12.
12 Dadashi A, Zhu J J, Zhang C. A computational fluid dynamics study on the flow field in a liquid-solid circulating fluidized bed riser[J]. Powder Technology, 2014, 260: 52-58.
13 刘国栋, 沈志恒, 王帅, 等. 液固流化床中颗粒流动特性的数值模拟[J]. 哈尔滨工业大学学报, 2010, 42(7): 1108-1111.
Liu G D, Shen Z H, Wang S, et al. Simulation of hydrodynamics of particles in a liquid-solid fluidized bed[J]. Journal of Harbin Institute of Technology, 2010, 42(7): 1108-1111.
14 Ehsani M, Movahedirad S, Shahhosseini S. The effect of particle properties on the heat transfer characteristics of a liquid-solid fluidized bed heat exchanger[J]. International Journal of Thermal Sciences, 2016, 102: 111-121.
15 王勤辉, 杨秋辉, 吴学成, 等. 多相流中颗粒旋转运动特性的研究进展[J]. 化工学报, 2011, 62(9): 2381-2390.
Wang Q H, Yang Q H, Wu X C, et al. Research progress of particle rotation characteristics in multi-phase flows[J]. CIESC Journal, 2011, 62(9): 2381-2390.
16 Torobin L B, Gauvin W H. Fundamental aspects of solids-gas flow(Ⅳ): The effects of particle rotation, roughness and shape[J]. The Canadian Journal of Chemical Engineering, 1960, 38(5): 142-153.
17 Best J L. The influence of particle rotation on wake stability at particle Reynolds numbers, ReP<300—implications for turbulence modulation in two-phase flows[J]. International Journal of Multiphase Flow, 1998, 24(5): 693-720.
18 由长福, 祁海鹰, 徐旭常. 煤粉颗粒所受Magnus力的数值模拟[J]. 工程热物理学报, 2001, 22(5): 625-628.
You C F, Qi H Y, Xu X C. Numerical simulation of Magnus lift on a coal particle[J]. Journal of Engineering Thermophysics, 2001, 22(5): 625-628.
19 Kajishima T. Influence of particle rotation on the interaction between particle clusters and particle-induced turbulence[J]. International Journal of Heat and Fluid Flow, 2004, 25(5): 721-728.
20 Chhabra R P. Bubbles, Drops, and Particles In Non-Newtonian Fluids[M]. Boca Raton:CRC Press, 2006.
21 Patel S K, Majumder S K. Interfacial stress in non-Newtonian flow through packed bed[J]. Powder Technology, 2011, 211(1): 127-134.
22 de Castro A R, Radilla G. Non-Darcian flow of shear-thinning fluids through packed beads: experiments and predictions using Forchheimer s law and Ergun s equation[J]. Advances in Water Resources, 2017, 100: 35-47.
23 Qi Z, Kuang S, Rong L, et al. Lattice Boltzmann investigation of the wake effect on the interaction between particle and power-law fluid flow[J]. Powder Technology, 2018, 326: 208-221.
24 Goldshtein A, Shapiro M. Mechanics of collisional motion of granular materials(Ⅰ): General hydrodynamic equations[J]. Journal of Fluid Mechanics, 1995, 282: 75-114.
25 Gidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions[M]. London: Academic Press, 1994.
26 Chapman S, Cowling T G. The Mathematical Theory of Non-Uniform Gases[M]. 3rded. Cambridge: Cambridge University Press, 1970.
27 Lun C K K. Kinetic theory for granular flow of dense, slightly inelastic, slightly rough spheres[J]. Journal of Fluid Mechanics, 1991, 233: 539-559.
28 Benyahia S, Syamlal M, Brien T J O. Evaluation of boundary conditions used to model dilute, turbulent gas/solids flows in a pipe[J]. Powder Technology, 2005, 156(2/3): 62-72.
29 Wilcox D C. Turbulence Modeling for CFD[M]. California: DCW Industries, 1993.
30 Kemblowski Z, Dziubinski M, Seck J. Flow of non-Newtonian fluids through granular media[J]. Advances in Transport Processes, 1989, 5: 117-175.
31 Jenkins J T, Louge M Y. On the flux of fluctuation energy in a collisional grain flow at a flat, frictional wall[J]. Physics of Fluids, 1997, 9(10): 2835-2840.
32 Broniarz-Press L, Agacinski P, Rozanski J. Shear-thinning fluids flow in fixed and fluidised beds[J]. International Journal of Multiphase Flow, 2007, 33(6): 675-689.
33 Ehsani M, Movahedirad S, Shahhosseini S, et al. Effects of restitution and specularity coefficients on solid-liquid fluidized bed hydrodynamics[J]. Chemical Engineering & Technology, 2015, 38(10): 1827-1836.
34 Subbarao D. A model for cluster size in risers[J]. Powder Technology, 2010, 199(1): 48-54.
35 Harris A T, Davidson J F, Thorpe R B. The prediction of particle cluster properties in the near wall region of a vertical riser[J]. Powder Technology, 2002, 127(2): 128-143.
[1] 谭畯坤, 刘玉东, 耿世超, 陈兵, 童明伟. 真空探针冷冻和复温性能实验测试及数值模拟[J]. 化工学报, 2020, 71(4): 1440-1449.
[2] 陈胡炜, 吉华, 冯东林, 李倩, 陈志. 基于多楔现象的微孔端面机械密封泄漏率分析及孔形设计[J]. 化工学报, 2020, 71(4): 1723-1733.
[3] 田凤国, 朱田, 孔德正, 雷鸣. 非均匀布风流化床内大颗粒停留时间特性[J]. 化工学报, 2020, 71(4): 1520-1527.
[4] 陈琦, 李京坤, 宋昱, 何倩, 李雪芳. 流动聚焦微通道内牛顿微液滴在幂律剪切致稀流体中的生成研究[J]. 化工学报, 2020, 71(4): 1510-1519.
[5] 宋祺, 杨智, 陈颖, 罗向龙, 陈健勇, 梁颖宗. 局部几何构型对聚焦流微通道内液滴生成特性的影响[J]. 化工学报, 2020, 71(4): 1540-1553.
[6] 王金红, 陈志, 刘凡, 李建明. 密封环支撑边界条件对机械密封端面变形的影响[J]. 化工学报, 2020, 71(4): 1744-1753.
[7] 王少雄, 李玉星, 刘翠伟, 梁杰, 李安琪, 薛源. 水下输气管道泄漏扩散特性模拟研究[J]. 化工学报, 2020, 71(4): 1898-1911.
[8] 车健, 江锦波, 李纪云, 彭旭东, 马艺, 王玉明. 节流孔出气模式对静压干气密封稳态性能影响[J]. 化工学报, 2020, 71(4): 1734-1743.
[9] 陈汇龙, 桂铠, 韩婷, 谢晓凤, 陆俊成, 赵斌娟. 上游泵送机械密封润滑膜固体颗粒沉积特性研究[J]. 化工学报, 2020, 71(4): 1712-1722.
[10] 周芮, 程光平, 张浩, 任枫, 王舜浩, 张小斌. 煤油贮箱冷氦鼓泡增压过程数值研究[J]. 化工学报, 2020, 71(3): 965-973.
[11] 李爽, 李玉星, 王冬旭, 王权. 上倾管高黏油气两相流型及压降特性[J]. 化工学报, 2020, 71(3): 983-996.
[12] 刘稳文, 吕梦芸, 李学艺, 黄璟, 池立勋, 闫锋, 张劲军. 含蜡油凝点判断准则的力学涵义[J]. 化工学报, 2020, 71(2): 566-574.
[13] 王修纲, 吴裕凡, 郭潞阳, 路庆华, 叶晓峰, 曹育才. 聚合釜传热性能的实验研究及数值模拟[J]. 化工学报, 2020, 71(2): 584-593.
[14] 周海军, 熊源泉. 补充风对水平管高压密相气力输送影响的模拟研究[J]. 化工学报, 2020, 71(2): 602-613.
[15] 刘丹, 成毅, 胡明月, 盛倩云, 周昊. 湿烟气工况下齿形螺旋翅片管束的性能研究[J]. 化工学报, 2020, 71(2): 575-583.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘心洪, 包雨云, 李志鹏, 高正明, John M. Smith. Particle Image Velocimetry Study of Turbulence Characteristics in a Vessel Agitated by a Dual Rushton Impeller[J]. CIESC Journal, 2008, 16(5): 700 -708 .
[2] 刘心洪, 包雨云, 李志鹏, 高正明. Analysis of Turbulence Structure in the Stirred Tank with a Deep Hollow Blade Disc Turbine by Time-resolved PIV[J]. CIESC Journal, 2010, 18(4): 588 -599 .
[3] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[4] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[5] 邓先和,邓颂九. 管间支撑物的结构对横纹槽管管束传热强化性能的影响 [J]. CIESC Journal, 1992, 43(1): 62 -68 .
[6] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[7] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[8] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[9] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[10] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .