化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 315-321.doi: 10.11949/0438-1157.20191197

• 过程系统工程 • 上一篇    下一篇

高速飞行器机载综合热管理系统设计与优化

阿嵘1(),庞丽萍2,杨东升3,齐玢1   

  1. 1.中国空间技术研究院载人航天总体部,北京 100094
    2.北京航空航天大学航空科学与工程学院,北京 100191
    3.北京卫星制造厂有限公司,北京 100094
  • 收稿日期:2019-10-12 修回日期:2019-11-21 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 阿嵘 E-mail:ivory_118@126.com
  • 作者简介:阿嵘(1991—),女,博士,工程师,ivory_118@126.com

Design and optimization of integrated thermal management system for high-speed aircraft

Rong A1(),Liping PANG2,Dongsheng YANG3,Bin QI1   

  1. 1.Institute of Manned Space System Engineering, China Academy of Space Technology, Beijing 100094, China
    2.School of Aeronautic Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
    3.Beijing Spacecrafts, Beijing 100094, China
  • Received:2019-10-12 Revised:2019-11-21 Online:2020-04-25 Published:2020-05-22
  • Contact: Rong A E-mail:ivory_118@126.com

摘要:

先进的高速飞行器面临着气动加热与大功率电子设备发热的双重热负荷,使得机载热沉与能量需求呈指数上升趋势,进而导致发动机性能下降、耗油量增加,严重制约着飞行器的功能和性能提升。机载热管理系统的优化设计,旨在提升系统制冷和供电性能的同时减小发动机性能损失。以Mach数Ma=1~4.4的大热负载高速飞行器为背景,针对三种机载综合热管理系统,开展适应飞行任务的系统优化设计,实现燃油热沉、外涵道引气热沉、冲压空气引气、发动机引气与飞行任务的最优匹配。研究过程采用等效质量方法,将各系统质量、能耗、气源消耗等成本统一等效为燃油代偿损失,并作为目标函数,对多种工况进行优化设计。研究结果表明:在Ma≤2时,采用外涵道空气热沉模式更为合适,但随飞行速度的进一步提高,其制冷循环压比显著上升制冷效率降低,燃油代偿损失急剧上升;基于燃油热沉的综合热管理模式更适用于Ma=2~4.5的飞行任务,其制冷循环功耗和能耗在各飞行工况下性能表现较为稳定,燃油代偿损失仅因飞行速度增大而增大;与发动机引气相比,冲压空气引气更适合Mach数较高的飞行任务规划。因此,对于巡航Ma≤2的飞行器,搭载“外涵道引气热沉+发动机引气”的机载综合热管理系统,发动机性能损失更低;对于巡航Ma=2~4.5的飞行器,搭载“燃油热沉+可切换发动机引气/冲压空气引气”的机载综合热管理系统,发动机性能最优。

关键词: 综合热管理系统, 高速飞行器, 动态仿真, 热力学, 优化设计

Abstract:

Under the dual effects of aerodynamic heating and high-power electronic equipment heating, the advanced high-speed aircraft heat sink and energy demand are exponentially rising, which seriously restricts the function and performance of the aircraft. In order to improve system cooling and power supply performance and reduce engine performance loss, the optimization design of integrated thermal management system is studied. In this paper, based on the large heat load high-speed aircraft with Mach number (Ma)1—4.4, the optimization design for the three integrated thermal management systems is carried out to optimal match the fuel heat sink, the outer duct convection heat sink, the ram air and flight missions. The equivalent quality method was used to analysis, which equalizes the mass, energy consumption and gas source consumption to the fuel weight penalty, and defined as the objective function. The results reveal that when the Mach number is lower than 2, the outer duct air heat sink mode is more economical. However, with the increasing of the flight speed, the refrigeration cycle pressure ratio significantly increased, which cause the fuel weight penalty increased sharply. When the Mach number is 2—4.5, the fuel heat sink mode is more suitable. Its fuel weight penalty is mainly due to the increasing of flight speed. Compared with engine bleed air, rim air is more suitable for higher Mach number. Thus, for the cruise Mach number below 2, the integrated thermal management system equipped with “external duct bleed air heat sink and engine bleed air” earns less engine performance loss. For the cruise Mach number of 2—4.5, the integrated thermal management system equipped with “fuel heat sink and switchable engine bleed air/rim air” earns better engine performance.

Key words: integrated thermal management system, high-speed aircraft, dynamic simulation, thermodynamics, optimization design

中图分类号: 

  • V 245.3

图1

综合热管理系统原理图"

表1

系统架构及适用Mach数"

系统系统架构热沉引气源Ma
1

1-2-3-4-5-6-1

7(IB)-8-9

外涵道空气中压级[1,3)
2

1-2'-3-4-5-6-1

7(IB)-8-9

高温Pao中压级[1,3)
3

1-2'-3-4-5-6-1

7(RB)-8-9

高温Pao冲压空气[1,4.4)

表2

燃油代偿损失来源及其计算方法"

代偿损失来源123计算方法

进气道

阻力

mbypass=m˙av-voutKgexpCeτ0gK-1

换热器

质量

mF=MHXexpCeτ0gK-1
压缩机质量mF=MCexpCeτ0gK-1
制冷涡轮质量mF=MCTexpCeτ0gK-1
发电涡轮质量mF=MPTexpCeτ0gK-1
冲压空气引气mrim=m˙evKgexpCeτ0gK-1

中压级

引气

mE=m˙eH*π0k-1k-1Huεcπck-1k-1+m˙evCeK(eCeτ0gK-1)Ceg
燃油消耗???mfuel=fm˙eKCeg(eCeτ0gK-1)

表3

优化变量初始值及约束条件"

系统T1/Km˙H/kg/sΔPmax,c/kPaΔPmax,h/kPa
系统1x195010
LBTz+500.100
UB1000200.9Pz-P05

系统

2和3

x17003
LB4730.1
UB10008

图2

机载综合热管理系统优化设计流程图"

表4

系统优化设计参数设置"

参数数值
巡航时长/s4200
高温Pao温度/℃150
设备最高许用温度/℃70
闭式循环涡轮出口压力/kPa100
升阻比4.62
单位推力燃油消耗量TSFC/h-13600(Ct,1+ Ct,2Ma)
常数Ct,1/s-11.1×10-4
常数Ct,2/s-16.8×10-5
进气道阻力损失系数0.9
涡轮和压缩机的绝热效率0.75
机械效率0.98
发动机涡轮前最高温度/K1400
发动机压气机末级最高温度/K800

图3

系统1性能随Mach数变化曲线"

图4

系统1的最小燃油代偿损失结果"

图5

系统2性能随Mach数变化曲线"

图6

系统2的最小燃油代偿损失结果"

图7

系统3的最小燃油代偿损失结果"

1 Office of the US Air Force Chief Scientist. Technology Horizons: A Vision for Science and Technology During 2010-2030 [M]. Maxwell AFB: Air University Press, 2010.
2 李益翔. 美国高超声速飞行器发展历程研究[D].哈尔滨: 哈尔滨工业大学, 2016.
Li Y X. Research on the development history of US hypersonic aircrafts[D]. Harbin: Harbin Institute of Technology, 2016.
3 Anderson J D. Hypersonic and High-Temperature Gas Dynamics[M]. New York: McGraw-Hill, 1989: 4-24.
4 蔡国飙, 徐大军. 高超声速飞行器技术[M]. 北京: 科学出版社, 2012: 3.
Cai G B, Xu D J. Hypersonic Aircraft Technology[M]. Beijing: Science Press,2012:3.
5 Mehta J, Charneski J, Wells P. Unmanned aerial systems (UAS) thermal management needs, status current, and future innovations[C]// 10th International Energy Conversion Engineering Conference. AIAA, 2012, 4051:1-14.
6 Mahefkey T, Yerkes K, Donovan B, et al. Thermal management challenges for future military aircraft power systems[C]// Power Systems Conference. SAE International, 2004, 3204:1-9.
7 孙友师. 从多电飞机到能量优化飞机——美国空军航空机电领域发展计划浅析[C]//中国航空学会2015年第二届中国航空科学技术大会论文集.中国航空学会, 2015:495-498.
Sun Y S. From MEA to EOA: analysis of USAF development programs related to aircraft system[C]//Proceedings of the 2nd China Aviation Science and Technology Conference of China Aviation Society 2015. CAS, 2015: 495-498.
8 Walters E, Amrhein M, O'Connell T, et al. modeling Invent, simulation, analysis and optimization[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. AIAA, 2010, 287:1-11.
9 Faleiro L. Summary of the European power optimised aircraft (POA) project[C]//45th International Congress of the Aeronautical Sciences. Optimage Ltd., 2006, 244:1-4.
10 Pangborn H C, Hey J E, Deppen T O,et al. Hardware-in-the-loop validation of advanced fuel thermal management control[J]. J. Thermophys Heat Transfer, 2017, 31(4): 901-909.
11 Maser A, Garcia E, Mavris D. Characterization of thermodynamic irreversibility for integrated propulsion and thermal management systems design[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. AIAA, 2012, 1124:1-24.
12 Reed W, von Spakovsky M, Raj P. Comparison of heat exchanger and thermal energy storage designs for aircraft thermal management systems[C]// 54th AIAA Aerospace Sciences Meeting. AIAA, 2016, 1023:1-14.
13 Sprouse J. F-22 environmental control/thermal management fluid transport optimization[C]//30th International Conference on Environmental Systems. SAE International, 2000, 2266:1-6.
14 German B, Daskilewicz M, Doty J. Using interactive visualizations to assess aircraft thermal management system modeling approaches[C]//11th AIAA Aviation Technology, Integration, and Operations (atio) Conference. AIAA, 2011, 7060:1-13.
15 沙拉, 塞库利克. 换热器设计技术[M]. 程林, 译. 北京: 机械工业出版社, 2010: 285-292.
Salad R K, Sekulic D P. Fundamentals of Heat Exchanger Design[M]. Cheng L,trans. Beijing: China Machine Press, 2010: 285-292.
16 余建祖. 换热器原理与设计[M]. 北京: 北京航空航天大学出版社, 2006: 20-25.
Yu J Z. Principle and Design of the Heat Exchanger[M]. Beijing: Beihang University Press, 2006: 20-25.
17 Weise P C. Mission-integrated synthesis/design optimization of aerospace systems under transient conditions[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2012.
18 Donovan A B. Vehicle level transient aircraft thermal management modeling and simulation[D]. Fairborn: Wright State University, 2016.
19 Roberts R, Eastbourn M S. Vehicle level tip-to-tail modeling of an aircraft[J]. Int. J. Thermodyn., 2014, 17(2): 107-115.
20 Iya S K. Thermal management of advanced aircraft secondary power systems[C]//Aerospace Technology Conference and Exposition. SAE International, 1990, 901959:1-10.
21 SAE Aerospace Applied Thermodynamics Manual. Aircraft Fuel Weight Penalty Due to Air Conditioning[R]. SAE International, 2004.
22 Weise P C. Mission-integrated synthesis/design optimization of aerospace systems under transient conditions[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2012.
23 赵继俊. 优化技术与MATLAB优化工具箱[M]. 北京: 机械工业出版社, 2011:141-144.
Zhao J J. Optimization Technology and MATLAB Optimization Toolbox[M]. Beijing: China Machine Press, 2011:141-144.
[1] 裴后举, 蒋彦龙, 施红, 崔永龙, 陈常栋, 钱晓辉. 基于M-L湍流模型的浮空器强迫对流换热[J]. 化工学报, 2020, 71(S1): 136-141.
[2] 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171.
[3] 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186.
[4] 罗坤, 毛晓东, 庞丽萍. 新型直升机热泵空调系统驾驶舱热控性能[J]. 化工学报, 2020, 71(S1): 187-193.
[5] 王晨, 折晓会, 张小松. 含空气净化过程的液态空气储能热力学研究[J]. 化工学报, 2020, 71(S1): 23-30.
[6] 郭晓雨, 田喆, 牛纪德, 祝捷. 基于分时电价的区域管网系统储能应用研究[J]. 化工学报, 2020, 71(S1): 293-299.
[7] 齐玢, 段希希, 阿嵘, 江泓升. 载人航天器环热控一体化仿真分析[J]. 化工学报, 2020, 71(S1): 300-306.
[8] 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37.
[9] 孟繁鑫, 孙佳宁, 周月, 高赞军, 程定斌. 飞机环控系统空气循环机仿真建模及试验校核[J]. 化工学报, 2020, 71(S1): 328-334.
[10] 周月, 张鹤林, 程定斌, 尹俊成. 典型空气循环制冷系统仿真研究[J]. 化工学报, 2020, 71(S1): 341-345.
[11] 郭良, 李恒, 庞丽萍, 毛晓东, 赵竞全, 杨晓东. 高速运载器发电/制冷联合系统稳态性能[J]. 化工学报, 2020, 71(S1): 391-396.
[12] 郭栋才, 盛强, 杨鹏, 徐捷, 王泽, 杨波, 曹娇坤. 基于热电效应的高效环控系统[J]. 化工学报, 2020, 71(S1): 404-410.
[13] 杨晓东, 庞丽萍, 阿嵘, 金亮. 高速飞行器燃油热管理系统飞行热航时[J]. 化工学报, 2020, 71(S1): 425-429.
[14] 张洁, 庞丽萍, 曲洪权, 王天博. 基于随机配置网络的机载电子吊舱多工况热模型[J]. 化工学报, 2020, 71(S1): 441-447.
[15] 杨东升, 阿嵘, 张建斌, 王大鹏, 张斌, 徐迎丽, 秦俊杰, 刘淑芬. 航天器舱内环境下非金属增材制造热效应分析[J]. 化工学报, 2020, 71(S1): 486-493.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .