化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 315-321.doi: 10.11949/0438-1157.20191197
Rong A1(),Liping PANG2,Dongsheng YANG3,Bin QI1
摘要:
先进的高速飞行器面临着气动加热与大功率电子设备发热的双重热负荷,使得机载热沉与能量需求呈指数上升趋势,进而导致发动机性能下降、耗油量增加,严重制约着飞行器的功能和性能提升。机载热管理系统的优化设计,旨在提升系统制冷和供电性能的同时减小发动机性能损失。以Mach数Ma=1~4.4的大热负载高速飞行器为背景,针对三种机载综合热管理系统,开展适应飞行任务的系统优化设计,实现燃油热沉、外涵道引气热沉、冲压空气引气、发动机引气与飞行任务的最优匹配。研究过程采用等效质量方法,将各系统质量、能耗、气源消耗等成本统一等效为燃油代偿损失,并作为目标函数,对多种工况进行优化设计。研究结果表明:在Ma≤2时,采用外涵道空气热沉模式更为合适,但随飞行速度的进一步提高,其制冷循环压比显著上升制冷效率降低,燃油代偿损失急剧上升;基于燃油热沉的综合热管理模式更适用于Ma=2~4.5的飞行任务,其制冷循环功耗和能耗在各飞行工况下性能表现较为稳定,燃油代偿损失仅因飞行速度增大而增大;与发动机引气相比,冲压空气引气更适合Mach数较高的飞行任务规划。因此,对于巡航Ma≤2的飞行器,搭载“外涵道引气热沉+发动机引气”的机载综合热管理系统,发动机性能损失更低;对于巡航Ma=2~4.5的飞行器,搭载“燃油热沉+可切换发动机引气/冲压空气引气”的机载综合热管理系统,发动机性能最优。
中图分类号:
1 | Office of the US Air Force Chief Scientist. Technology Horizons: A Vision for Science and Technology During 2010-2030 [M]. Maxwell AFB: Air University Press, 2010. |
2 | 李益翔. 美国高超声速飞行器发展历程研究[D].哈尔滨: 哈尔滨工业大学, 2016. |
Li Y X. Research on the development history of US hypersonic aircrafts[D]. Harbin: Harbin Institute of Technology, 2016. | |
3 | Anderson J D. Hypersonic and High-Temperature Gas Dynamics[M]. New York: McGraw-Hill, 1989: 4-24. |
4 | 蔡国飙, 徐大军. 高超声速飞行器技术[M]. 北京: 科学出版社, 2012: 3. |
Cai G B, Xu D J. Hypersonic Aircraft Technology[M]. Beijing: Science Press,2012:3. | |
5 | Mehta J, Charneski J, Wells P. Unmanned aerial systems (UAS) thermal management needs, status current, and future innovations[C]// 10th International Energy Conversion Engineering Conference. AIAA, 2012, 4051:1-14. |
6 | Mahefkey T, Yerkes K, Donovan B, et al. Thermal management challenges for future military aircraft power systems[C]// Power Systems Conference. SAE International, 2004, 3204:1-9. |
7 | 孙友师. 从多电飞机到能量优化飞机——美国空军航空机电领域发展计划浅析[C]//中国航空学会2015年第二届中国航空科学技术大会论文集.中国航空学会, 2015:495-498. |
Sun Y S. From MEA to EOA: analysis of USAF development programs related to aircraft system[C]//Proceedings of the 2nd China Aviation Science and Technology Conference of China Aviation Society 2015. CAS, 2015: 495-498. | |
8 | Walters E, Amrhein M, O'Connell T, et al. modeling Invent, simulation, analysis and optimization[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. AIAA, 2010, 287:1-11. |
9 | Faleiro L. Summary of the European power optimised aircraft (POA) project[C]//45th International Congress of the Aeronautical Sciences. Optimage Ltd., 2006, 244:1-4. |
10 | Pangborn H C, Hey J E, Deppen T O,et al. Hardware-in-the-loop validation of advanced fuel thermal management control[J]. J. Thermophys Heat Transfer, 2017, 31(4): 901-909. |
11 | Maser A, Garcia E, Mavris D. Characterization of thermodynamic irreversibility for integrated propulsion and thermal management systems design[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. AIAA, 2012, 1124:1-24. |
12 | Reed W, von Spakovsky M, Raj P. Comparison of heat exchanger and thermal energy storage designs for aircraft thermal management systems[C]// 54th AIAA Aerospace Sciences Meeting. AIAA, 2016, 1023:1-14. |
13 | Sprouse J. F-22 environmental control/thermal management fluid transport optimization[C]//30th International Conference on Environmental Systems. SAE International, 2000, 2266:1-6. |
14 | German B, Daskilewicz M, Doty J. Using interactive visualizations to assess aircraft thermal management system modeling approaches[C]//11th AIAA Aviation Technology, Integration, and Operations (atio) Conference. AIAA, 2011, 7060:1-13. |
15 | 沙拉, 塞库利克. 换热器设计技术[M]. 程林, 译. 北京: 机械工业出版社, 2010: 285-292. |
Salad R K, Sekulic D P. Fundamentals of Heat Exchanger Design[M]. Cheng L,trans. Beijing: China Machine Press, 2010: 285-292. | |
16 | 余建祖. 换热器原理与设计[M]. 北京: 北京航空航天大学出版社, 2006: 20-25. |
Yu J Z. Principle and Design of the Heat Exchanger[M]. Beijing: Beihang University Press, 2006: 20-25. | |
17 | Weise P C. Mission-integrated synthesis/design optimization of aerospace systems under transient conditions[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2012. |
18 | Donovan A B. Vehicle level transient aircraft thermal management modeling and simulation[D]. Fairborn: Wright State University, 2016. |
19 | Roberts R, Eastbourn M S. Vehicle level tip-to-tail modeling of an aircraft[J]. Int. J. Thermodyn., 2014, 17(2): 107-115. |
20 | Iya S K. Thermal management of advanced aircraft secondary power systems[C]//Aerospace Technology Conference and Exposition. SAE International, 1990, 901959:1-10. |
21 | SAE Aerospace Applied Thermodynamics Manual. Aircraft Fuel Weight Penalty Due to Air Conditioning[R]. SAE International, 2004. |
22 | Weise P C. Mission-integrated synthesis/design optimization of aerospace systems under transient conditions[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2012. |
23 | 赵继俊. 优化技术与MATLAB优化工具箱[M]. 北京: 机械工业出版社, 2011:141-144. |
Zhao J J. Optimization Technology and MATLAB Optimization Toolbox[M]. Beijing: China Machine Press, 2011:141-144. |
[1] | 裴后举, 蒋彦龙, 施红, 崔永龙, 陈常栋, 钱晓辉. 基于M-L湍流模型的浮空器强迫对流换热[J]. 化工学报, 2020, 71(S1): 136-141. |
[2] | 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171. |
[3] | 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186. |
[4] | 罗坤, 毛晓东, 庞丽萍. 新型直升机热泵空调系统驾驶舱热控性能[J]. 化工学报, 2020, 71(S1): 187-193. |
[5] | 王晨, 折晓会, 张小松. 含空气净化过程的液态空气储能热力学研究[J]. 化工学报, 2020, 71(S1): 23-30. |
[6] | 郭晓雨, 田喆, 牛纪德, 祝捷. 基于分时电价的区域管网系统储能应用研究[J]. 化工学报, 2020, 71(S1): 293-299. |
[7] | 齐玢, 段希希, 阿嵘, 江泓升. 载人航天器环热控一体化仿真分析[J]. 化工学报, 2020, 71(S1): 300-306. |
[8] | 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37. |
[9] | 孟繁鑫, 孙佳宁, 周月, 高赞军, 程定斌. 飞机环控系统空气循环机仿真建模及试验校核[J]. 化工学报, 2020, 71(S1): 328-334. |
[10] | 周月, 张鹤林, 程定斌, 尹俊成. 典型空气循环制冷系统仿真研究[J]. 化工学报, 2020, 71(S1): 341-345. |
[11] | 郭良, 李恒, 庞丽萍, 毛晓东, 赵竞全, 杨晓东. 高速运载器发电/制冷联合系统稳态性能[J]. 化工学报, 2020, 71(S1): 391-396. |
[12] | 郭栋才, 盛强, 杨鹏, 徐捷, 王泽, 杨波, 曹娇坤. 基于热电效应的高效环控系统[J]. 化工学报, 2020, 71(S1): 404-410. |
[13] | 杨晓东, 庞丽萍, 阿嵘, 金亮. 高速飞行器燃油热管理系统飞行热航时[J]. 化工学报, 2020, 71(S1): 425-429. |
[14] | 张洁, 庞丽萍, 曲洪权, 王天博. 基于随机配置网络的机载电子吊舱多工况热模型[J]. 化工学报, 2020, 71(S1): 441-447. |
[15] | 杨东升, 阿嵘, 张建斌, 王大鹏, 张斌, 徐迎丽, 秦俊杰, 刘淑芬. 航天器舱内环境下非金属增材制造热效应分析[J]. 化工学报, 2020, 71(S1): 486-493. |
|