化工学报 ›› 2020, Vol. 71 ›› Issue (2): 871-878.doi: 10.11949/0438-1157.20191196

• 材料化学工程与纳米技术 • 上一篇    下一篇

热塑性聚醚酯弹性体硬段含量对其超临界CO 2发泡行为的影响

蒋瑞1(),胡冬冬1,刘涛1,2,赵玲1,2()   

  1. 1.华东理工大学化工学院,化学工程联合国家重点实验室,上海 200237
    2.新疆大学化学化工学院,新疆 乌鲁木齐 830046
  • 收稿日期:2019-10-12 修回日期:2019-12-26 出版日期:2020-02-05 发布日期:2020-01-07
  • 通讯作者: 赵玲 E-mail:030130876@mail.ecust.edu.cn;zhaoling@ecust.edu.cn
  • 作者简介:蒋瑞(1991—),男,博士研究生, 030130876@mail.ecust.edu.cn
  • 基金资助:
    国家重点研发计划项目(2016YFB0302200)

Effect of hard segment content on microcellular foaming process of thermoplastic polyether ester elastomer using supercritical CO 2 as blowing agent

Rui JIANG1(),Dongdong HU1,Tao LIU1,2,Ling ZHAO1,2()   

  1. 1.State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
    2.School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, Xinjiang, China
  • Received:2019-10-12 Revised:2019-12-26 Online:2020-02-05 Published:2020-01-07
  • Contact: Ling ZHAO E-mail:030130876@mail.ecust.edu.cn;zhaoling@ecust.edu.cn

摘要:

研究了以聚对苯二甲酸丙二醇酯(PBT)为硬段,聚四氢呋喃醚(PTMG)为软段的热塑性聚醚酯弹性体(TPEE)在超临界CO 2作用下的固态发泡行为,考察了硬段含量的差异对结晶行为,CO 2在TPEE中溶解度及扩散行为,以及固态发泡行为的影响。发现硬段含量的差异对TPEE结晶行为影响尤为显著,当硬段含量由29%上升到65%时,其熔点从162.6℃上升至201.9℃,且结晶度由20%上升到40%。结晶的存在抑制了CO 2在基体内的溶解度且阻碍了其在基体内的扩散。由不同硬段的TPEE中CO 2溶解度和扩散过程的变化可知,CO 2更倾向于溶解在TPEE软区内,而由结晶为主构成的硬区中CO 2溶解量较低。通过研究高压CO 2环境下的TPEE等温结晶过程发现,经扩散进入TPEE软区内的CO 2可以提升TPEE链段运动能力,诱导未结晶链段通过规整堆叠而结晶。在CO 2压力15 MPa经快速降压发泡聚醚酯弹性体,发现随着硬段含量的增加,其温度发泡窗口向高温区移动,当硬段含量为29%时,发泡温度区间为50~160℃,平均孔径4.6~16.5 μm,泡孔密度8.1×10 7~7.5×10 8cells/cm 3,发泡倍率1.1~5.8;当硬段含量为65%时,发泡温度区间为165~195 ℃,平均孔径1.8~6.8 μm,泡孔密度2.6×10 8~1.1×10 11 cells/cm 3,发泡倍率1.0~4.2。

关键词: 聚合物加工, 超临界二氧化碳, 泡沫, 弹性体, 结晶

Abstract:

Solid-state foaming process of TPEE composed of poly(tetra methylene glycol) (PTMG)“soft”blocks and poly(butylene terephthalate) (PBT)“hard”blocks using supercritical CO 2 (scCO 2) as the blowing agent was investigated. Plastic foams with average cell diameter of 2-17 μm and expansion ratio of 1-6 folds were prepared from TPEE. Three kinds of TPEE copolymers with different block ratio were used to investigate the influence of hard segment content on foaming behavior. The CO 2 dissolved into soft segments (PTMG) and hard segments (PBT) were carefully characterized by sorption process, meanwhile the gas diffusion coefficient was fitted from the Fick s diffusion law. The results show that the solubility and diffusivity of CO 2 in soft segments (PTMG) is significantly higher than that in hard segments (PBT). When the hard segment content rose from 29% to 65%, the melting point rose from 162.6℃ to 201.9℃ with a crystallinity rising from 20% to 40%. TPEE copolymers were foamed in a high-pressure chamber by using scCO 2. The effect of temperature and block ratio on the cell morphology was investigated. It was found that the content of hard segment had great influence on the solid-state foaming process. With higher hard segment content, the processing window was broadened and shifted to higher temperature.

Key words: polymer processing, supercritical carbon dioxide, foam, elastomer, crystallization

中图分类号: 

  • TQ 317.9

图1

TPEE的红外光谱图"

图2

TPEE的核磁谱图"

图3

TPEE的二次熔融曲线(a)及结晶曲线(b)"

图4

TPEE的XRD谱图"

图5

CO 2在TPEE中的溶解度(a)及扩散过程(b) "

图6

L-HS发泡样品的SEM图"

图7

M-HS发泡样品的SEM图"

图8

H-HS发泡样品的SEM图"

图9

发泡样品的平均孔径(a),表观倍率(b)及泡孔密度(c)"

1 Qian Z, Li S, He Y, et al. Synthesis and in vitro degradation study of poly(ethylene terephthalate)/poly(ethylene glycol) (PET/PEG) multiblock copolymer [J]. Polymer Degradation and Stability, 2004, 83( 1): 93- 100.
2 Szymczyk A, Senderek E, Nastalczyk J, et al. New multiblock poly(ether-ester)s based on poly(trimethylene terephthalate) as rigid segments[J]. European Polymer Journal, 2008, 44( 2): 436- 443.
3 Zaman H U, Song J C, Park L S, et al. Poly(lactic acid) blends with desired end-use properties by addition of thermoplastic polyester elastomer and MDI[J]. Polymer Bulletin, 2011, 67( 1): 187- 198.
4 Zhou W, Zhang Y, Xu Y, et al. Synthesis and characterization of bio-based poly(butylene furandicarboxylate)- b-poly(tetramethylene glycol) copolymers [J]. Polymer Degradation and Stability, 2014, 109: 21- 26.
5 Nagai Y, Ogawa T, Yu Z L, et al. Analysis of weathering of thermoplastic polyester elastomers(Ⅰ): Polyether-polyester elastomers[J]. Polymer Degradation and Stability, 1997, 56( 1): 115- 121.
6 Lee T Y, Lee C H, Cho S, et al. Enhancement of physical properties of thermoplastic polyether-ester elastomer by reactive extrusion with chain extender[J]. Polymer Bulletin, 2010, 66( 7): 979- 990.
7 Park C B, Baldwin D F, Suh N P. Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers[J]. Polymer Engineering and Science, 1995, 35( 5): 432- 440.
8 Martini-Vvedensky J E, Suh N P, Waldman F A. Microcellular closed cell foams and their method of manufacture: US4473665[P]. 1984-09-25.
9 Shimbo M, Higashitani I, Miyano Y. Mechanism of strength improvement of foamed plastics having fine cell[J]. Journal of Cellular Plastics, 2007, 43( 2): 157- 167.
10 Bao J B, Nyantakyi J A, Weng G S, et al. Tensile and impact properties of microcellular isotactic polypropylene (PP) foams obtained by supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2016, 111: 63- 73.
11 Vignoles G L, Ortona A. Numerical study of effective heat conductivities of foams by coupled conduction and radiation[J]. International Journal of Thermal Sciences, 2016, 109: 270- 278.
12 Gao T, Zhao S J, Bao R Y, et al. Constructing sandwich-architectured poly(L-lactide)/high-melting-point poly(L-lactide) nonwoven fabrics: toward heat-resistant poly(L-lactide) barrier biocomposites with full biodegradability[J]. ACS Applied Bio Materials, 2019, 2( 3): 1357- 1367
13 Pham T M, Chen W, Kingston J, et al. Impact response and energy absorption of single phase syntactic foam[J]. Composites Part B: Engineering, 2018, 150: 226- 233
14 Mohsenizadeh M, Gasbarri F, Munther M, et al. Additively-manufactured lightweight metamaterials for energy absorption[J]. Materials & Design, 2018, 139: 521- 530.
15 Choe H, Sung G, Kim J H. Chemical treatment of wood fibers to enhance the sound absorption coefficient of flexible polyurethane composite foams[J]. Composites Science and Technology, 2018, 156: 19- 27.
16 Trinh V H, Langlois V, Guilleminot J, et al. Tuning membrane content of sound absorbing cellular foams: fabrication, experimental evidence and multiscale numerical simulations[J]. Materials & Design, 2019, 162: 345- 361
17 苑会林, 申娟, 刘长维, 等. 高速铁路垫片 TPEE 的注射微发泡性能研究[J]. 工程塑料应用, 2013, 41( 10): 17- 22.
Yuan H L, Shen J, Liu C W, et al. Study on property of injection micro foaming TPEE for high speed railway[J]. Application of Engineering Plastics, 2013, 41( 10): 17- 22.
18 冯刚, 苑会林. 热塑性聚酯弹性体TPEE挤出发泡研究[J]. 塑料工业, 2010, 38( 2): 76- 82.
Feng G, Yuan H L. Study on extrusion foaming of TPEE[J]. Plastics Industry, 2010, 38( 2): 76- 82.
19 Mi H Y, Jing X, Peng J, et al. Influence and prediction of processing parameters on the properties of microcellular injection molded thermoplastic polyurethane based on an orthogonal array test[J]. Journal of Cellular Plastics, 2013, 49( 5): 439- 458.
20 Martínez A B, Realinho V, Antunes M, et al. Microcellular foaming of layered double hydroxide-polymer nanocomposites[J]. Industrial & Engineering Chemistry Research, 2011, 50( 9): 5239- 5247.
21 Huang A, Peng X, Turng L S. In-situ fibrillated polytetrafluoroethylene (PTFE) in thermoplastic polyurethane (TPU) via melt blending: effect on rheological behavior, mechanical properties, and microcellular foamability [J]. Polymer, 2018, 134: 263- 274.
22 Chen J, Lyu Q, Wu D, et al. Nucleation of a thermoplastic polyester elastomer controlled by silica nanoparticles[J]. Industrial & Engineering Chemistry Research, 2016, 55( 18): 5279- 5286.
23 Deshmukh G S, Pathak S U, Peshwe D R, et al. Effect of uncoated calcium carbonate and stearic acid coated calcium carbonate on mechanical, thermal and structural properties of poly(butylene terephthalate) (PBT)/calcium carbonate composites[J]. Bulletin of Materials Science, 2010, 33( 3): 277- 284.
24 Nojima S, Higaki Y, Ishige R, et al. Crystallization-induced structure fluctuation of crystallized microdomain structure composed of strongly segregated crystalline-crystalline diblock copolymers[J]. Polymer, 2016, 102: 256- 265.
25 Nakagawa S, Tanaka T, Ishizone T, et al. Crystallization behavior of poly(ε-caprolactone) chains confined in lamellar nanodomains[J]. Polymer, 2014, 55( 16): 4394- 4400.
26 Nakagawa S, Ishizone T, Nojima S, et al. Effects of chain-ends tethering on the crystallization behavior of poly(ε-caprolactone) confined in lamellar nanodomains[J]. Macromolecules, 2015, 48( 19): 7138- 7145.
27 Yokouchi M, Sakakibara Y, Chatani Y, et al. Structures of two crystalline forms of poly(butylene terephthalate) and reversible transition between them by mechanical deformation[J]. Macromolecules, 1976, 9( 2): 266- 273.
28 Desborough I J, Hall I H. A comparison of published crystalline structures of poly(tetramethylene terephthalate)[J]. Polymer, 1977, 18( 8): 825- 830.
29 Zhang X, Ding W, Zhao N, et al. Effects of compressed CO 2 and cotton fibers on the crystallization and foaming behaviors of polylactide [J]. Industrial & Engineering Chemistry Research, 2018, 57( 6): 2094- 2104.
30 Guo H, Kumar V. Some thermodynamic and kinetic low-temperature properties of the PC-CO 2 system and morphological characteristics of solid-state PC nanofoams produced with liquid CO 2[J]. Polymer, 2015, 56: 46- 56.
31 Hu D, Chen J, Sun S, et al. Solubility and diffusivity of CO 2 in isotactic polypropylene/nanomontmorillonite composites in melt and solid states [J]. Industrial & Engineering Chemistry Research, 2014, 53( 7): 2673- 2683.
[1] 田洲, 焦栋, 王金强, 刘柏平. 序列分布导向的CGC催化乙烯与1-辛烯共聚过程建模[J]. 化工学报, 2020, 71(2): 651-659.
[2] 赵绍磊, 王耀国, 张腾, 周丽娜, 龚俊波, 汤伟伟. 制药结晶中的先进过程控制[J]. 化工学报, 2020, 71(2): 459-474.
[3] 张文铖,龚俊波,董伟兵,吴送姑. 凝胶对结晶过程影响的研究进展[J]. 化工学报, 2020, 71(2): 487-499.
[4] 潘海华, 唐睿康. 生物矿化及仿生矿化中的信息传递和转化[J]. 化工学报, 2020, 71(1): 68-80.
[5] 李莹莹, 邓谦谦, 刘浩, 刘其春, 顾正桂, 王昉. 新型丝素复合膜的微结构表征及热稳定性[J]. 化工学报, 2020, 71(1): 388-396.
[6] 田亚晓, 王乃用, 李常兴, 杜文静. 泡沫镍板冷却特性的实验研究及数值模拟[J]. 化工学报, 2019, 70(S1): 79-85.
[7] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[8] 王慧丽, 周国兵. 局部低温诱发过冷三水醋酸钠释能特性实验研究[J]. 化工学报, 2019, 70(9): 3346-3352.
[9] 李艺群, 罗春欢, 李娜, 苏庆泉. 基于吸收式制冷循环的CaCl2-LiCl/H2O工质对研究[J]. 化工学报, 2019, 70(9): 3483-3494.
[10] 李冠男, 贺高红, 姜晓滨. 膜结晶处理高浓度Na+、Mg2+//Cl--H2O溶液的结晶调控[J]. 化工学报, 2019, 70(9): 3412-3420.
[11] 刘占斌, 何雅玲, 王坤, 马朝, 姜涛. 泡沫填充方式对管内超临界CO2流动换热的影响研究[J]. 化工学报, 2019, 70(9): 3329-3336.
[12] 苗苗, 孔皓, 张缦, 吴玉新, 杨海瑞, 张建胜. 多元煤灰灰熔点及晶体组成特性研究[J]. 化工学报, 2019, 70(8): 2909-2918.
[13] 张明振, 黄冬梅, 胡毅伟, 原琪, 席合一, 沈利铭, 段鹏征. 点火位置对乳胶泡沫水平火蔓延规律的影响[J]. 化工学报, 2019, 70(7): 2802-2810.
[14] 黄明, 康俊阳, 吴昕哲, 石宪章, 刘永志, 曹伟, 刘春太. 注塑成型光学制品折射率分层模拟与实验研究[J]. 化工学报, 2019, 70(7): 2503-2511.
[15] 沈伟, 彭旭东, 江锦波, 李纪云. 高速超临界二氧化碳干气密封实际效应影响分析[J]. 化工学报, 2019, 70(7): 2645-2659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 马学忠, 孟祥铠, 王玉明, 赵文静, 沈明学, 彭旭东. 机械端面密封反向螺旋槽空化效应与泄漏控制机理[J]. 化工学报, 2018, 69(4): 1558 -1568 .
[2] 余明高, 栾鹏鹏, 郑凯, 阳旭峰, 万少杰, 段玉龙. 管道内预混合成气爆炸特性[J]. 化工学报, 2018, 69(10): 4486 -4494 .
[3] 佟颖, Ahmad Nouman, 鲁波娜, 王维. 基于EMMS介尺度模型的双分散鼓泡流化床的模拟[J]. 化工学报, 2019, 70(5): 1682 -1692 .
[4] . 本期封面、广告页、中英文目次表[J]. 化工学报, 2019, 70(6): 0 .
[5] 吴涵, 陈滢, 刘敏, 王淑莹, 张伟. SBBR反应器中耐冷微生物的驯化与识别[J]. 化工学报, 2020, 71(2): 766 -776 .
[6] 曲江源, 刘霄龙, 关彦军, 齐娜娜, 滕阳, 徐文青, 朱廷钰, 张锴. 基于CFD模拟的臭氧低温氧化烧结烟气中NO过程分析[J]. 化工学报, 2019, 70(11): 4387 -4396 .
[7] 张淑芬. 中国染料工业现状与发展趋势[J]. 化工学报, 2019, 70(10): 3704 -3711 .
[8] 彭雪, 芦琛璘, 卢滇楠. 氧气和一氧化碳在人血红蛋白迁移过程研究[J]. 化工学报, 2020, 71(2): 724 -735 .
[9] . 沉痛悼念陈家镛先生[J]. 化工学报, 2019, 70(9): 0 .
[10] 何洋, 王利民, 唐春丽, 车得福. H型翅片管湿烟气对流冷凝传热的数值模拟研究[J]. 化工学报, 2019, 70(12): 4556 -4564 .