化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 300-306.doi: 10.11949/0438-1157.20191193

• 过程系统工程 • 上一篇    下一篇

载人航天器环热控一体化仿真分析

齐玢1(),段希希2,阿嵘1,江泓升3   

  1. 1.北京空间技术研制试验中心,北京 100094
    2.中国空间技术研究院,北京 100094
    3.北京航空航天大学航空科学与工程学院,北京 100191
  • 收稿日期:2019-11-12 修回日期:2019-11-20 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 齐玢 E-mail:qionline@163.com
  • 作者简介:齐玢(1986—),男,博士,高级工程师,qionline@163.com
  • 基金资助:
    国家重大科技专项工程;国家自然科学基金项目(11902026)

Analysis of environmental control and thermal control for manned spacecraft

Bin QI1(),Xixi DUAN2,Rong A1,Hongsheng JIANG3   

  1. 1.Institute of Manned Space System Engineering, China Academy of Space Technology, Beijing 100094, China
    2.China Academy of Space Technology, Beijing 100094, China
    3.School of Aeronatic Science and Engineering, Beihang University, Beijing 100191, China
  • Received:2019-11-12 Revised:2019-11-20 Online:2020-04-25 Published:2020-05-22
  • Contact: Bin QI E-mail:qionline@163.com

摘要:

采用系统建模及仿真方法搭建了一种典型载人航天器环热控一体化系统模型,分析了系统的性能。针对3人7天载人飞行工况开展了仿真分析,结果表明,经过合理设计,该系统可将舱内温湿度、压力、氧分压等参数控制在航天医学指标要求范围内。环热控系统仿真结果较好地预测了系统工作过程,显示了主要参数的变化情况,结果合理,验证了仿真方法、系统仿真模型的正确性。通过控制流体回路外回路旁通阀门开度,可准确控制外回路控温点温度,保证舱内温湿度在合理范围之内。此外,外回路控温点的设定会对环热控系统状态带来影响,通过合理设计外回路控温点,可保证舱内温湿度满足航天医学指标要求。

关键词: 载人航天器, 环境, 热控制, 集成, 动态仿真

Abstract:

There is strong coupling between environmental control system and thermal control system of manned spacecraft in terms of heat and material flow. In the design stage, it is necessary to carry out integrated system simulation analysis, so as to predict and verify the system performance. A typical integrated environmental control and thermal control system model of manned spacecraft is built using system modeling and simulation methods, including crew module, air purification module, air supply and pressure regulation module, fluid loop module, etc. The performance of the system is analyzed. The simulation analysis was carried out for the manned flight conditions of three persons in 7 days. The results show that the parameters of temperature, humidity, pressure and oxygen partial pressure in the cabin can be controlled within the requirements of aerospace medical indicators by reasonable design. The simulation results of the environmental control system and thermal control system accurately predict the working process of the system, show the changes of the main parameters, and the results are reasonable, which verify the correctness of the simulation method and the system simulation model. By controlling the opening of the bypass valve in the outer loop of the fluid circuit, the temperature of the control point in the outer loop can be accurately controlled to ensure that the temperature and humidity in the cabin are within a reasonable range. In addition, the setting of temperature control point in the outer loop will affect the state of the environmental control system and thermal control system. By reasonably designing the temperature control point in the outer loop, the temperature and humidity in the cabin can be guaranteed to meet the requirements of aerospace medical indicators. The research results play an important role in the integrated design and optimization of environmental control system and thermal control system.

Key words: manned spacecraft, environment, thermal control, integration, dynamic simulation

中图分类号: 

  • V 423.7

图1

典型环热控系统组成"

图2

环热控系统仿真模型"

图3

舱内压力随时间变化曲线"

图4

舱内温湿度随时间变化曲线"

图5

外回路控温点温度随时间变化曲线"

图6

不同外回路控温点温度下的舱内温湿度变化"

1 Miyajima H. Development of simulation tool for life support system design based on the interaction model[R]. SAETechnical Paper Series 2009-01-2463, 2009.
2 Gregori C, Torres A, Perez R, et al. Mathematical modeling of multiple evaporator/multiple condenser LHPs using Ecosimpro[R]. SAETechnical Paper Series 2006-01-2174, 2006.
3 Perez-Vara R, Mannu S, Pin O, et al. Overview of European applications of EcosimPro to ECLSS, CELSS, and ATCS[R]. SAETechnical Paper Series 2003-01-2439, 2003.
4 Rodriguez A, Ordonez I L, Poughon L. Application of EcosimPro to bio-regenerative life support components[R]. SAETechnical Paper Series 2003-01-2410, 2003.
5 Romera P J A, Persson J, Witt J, et al. Mode transition analyses of the attached pressurized module cabin air loop with EcosimPro[R]. SAETechnical Paper Series 2000-01-2366, 2000.
6 Barker R S, Blakely R S. G189A – generalized environment / thermal control and life support systems computer program[R]. Program Menual McDonnell Douglas Corp. Report MDAC G2444, 1971.
7 Barker R S, So K T, Debarro M J. G189 computer program modeling of environmental control and life support systems for the space station[R]. SAETechnical Paper Series 871427, 1987.
8 Barker R S, Jouanne R G. Preliminary G189A computer program modeling of the space station ECLSS[R]. SAETechnical Paper Series 891499, 1989.
9 Roger G V J, Barker R S. Dew point analysis for space station freedom[R]. NASA 921227, 1992.
10 张吉礼, 梁珍, 郑忠海, 等. 载人航天空间站舱内通风对流换热数值研究进展[J]. 暖通空调, 2006, 36(1): 28-34.
Zhang J L, Liang Z, Zheng Z H, et al. Numerical simulation progresses of convection heat transfer in manned space craft cabin[J]. HV & AC, 2006, 36(1): 28-34.
11 Qu H Q, Wang T Q, Liu Y T, et al. Substance flow simulation method for manned spacecraft in Matlab/Simulink environment[J]. BioTechnology: An Indian Journal, 2014, 10(18): 10230-10237.
12 Cory K F. Dynamic system modeling of regenerative life support systems[R]. SAETechnical Paper Series 1999-01-2040, 1999.
13 Cory K F, Karen E M, Bruce D. Dynamic model of the BIO-Plex air revitalization system[R]. SAETechnical Paper Series 2001-01-2318, 2001.
14 Jones H W, Finn C K, Kwauk X, et al. Modeling separate and combined atmospheres in BIO-Plex[R]. SAETechnical Paper Series 2001-01-2361, 2011.
15 Malin J T, Fleming L. Enhancing discrete event simulation by integrating continuous models[R]. AIAA Technical Report SS-99-05-022, 1999.
16 张信荣, 任建勋, 梁新刚, 等. 载人航天器并联热网络系统的优化分析[J]. 清华大学学报(自然科学版), 2002, 42(4): 462-465.
Zhang X R, Ren J X, Liang X G, et al. Optimization of the thermal network in parallel connection of manned spacecraft[J]. J. Tsinghua Univ. (Sci. & Tech.), 2002, 42(4): 462-465.
17 张信荣, 任建勋, 梁新刚, 等. 载人航天器环境生保系统热网络质量的优化[J].清华大学学报(自然科学版), 2000, 40(4): 47-50.
Zhang X R, Ren J X, Liang X G, et al. Mass optimization of thermos-hydraulic network of manned spacecraft environment control and life support system[J]. J. Tsinghua Univ. (Sci. & Tech.), 2000, 40(4): 47-50.
18 任建勋, 张信荣, 陈泽敬, 等. 航天器热控和环境控制生命保障系统热网的优化[J].清华大学学报(自然科学版), 2002, 42(4): 207-210.
Ren J X, Zhang X R, Chen Z J, et al. Optimization of thermal network for spacecraft thermal control and environment control and life support system[J]. J. Tsinghua Univ. (Sci. & Tech.), 2002, 42(4): 207-210.
19 靳健, 何振辉, 吕树申, 等. 空间站耦合式热管理系统性能分析[J]. 载人航天, 2012, 18(1): 60-67.
Jin J, He Z H, Lyu S S, et al. Performance analysis of coupled thermal control system of space station[J]. Manned Spaceflight, 2012, 18(1): 60-67.
20 靳健, 徐进, 侯永青. 多舱段载人航天器氧分压控制仿真分析[J]. 北京航空航天大学学报, 2015, 41(8): 1409-1415.
Jin J, Xu J, Hou Y Q. Simulation analysis on oxygen partial pressure control of multi-cabin manned spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(8): 1409-1415.
21 靳健, 侯永青. 多舱段载人航天器CO2去除系统性能仿真分析[J]. 北京航空航天大学学报, 2014, 40(10): 1349-1354.
Jin J, Hou Y Q. Analysis on characteristics of CO2 removal system of multi-cabin human spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(10): 1349-1354.
22 刘伟, 丁建完, 赵建军, 等. 基于Modelica的载人航天器环热控系统建模仿真[J]. 航天器环境工程, 2017, 34(2): 143-149.
Liu W, Ding J W, Zhao J J, et al. Modeling and simulation of environment and thermal control system of manned spacecraft based on Modelica[J]. Spacecraft Environment Engineering, 2017, 34(2): 143-149.
23 Wieland P. Deigning for human presence in space: an introduction to environmental control and life support systems[R]. NASA RP-1324, 1994.
24 黄震, 赵建贺, 李志杰. 返回舱再入过程密封舱气体泄漏计算研究[J]. 航天器环境工程, 2017, 34(4): 415-418.
Huang Z, Zhao J H, Li Z J. Leakage of a sealed cabin in re-entry flight[J]. Spacecraft Environment Engineering, 2017, 34(4): 415-418.
25 李兴乾, 张伟, 郑昊, 等. 载人航天器密封系统漏率设计方法[J]. 航天器环境工程, 2013, 30(6): 606-609.
Li X Q, Zhang W, Zheng H, et al. The design method of leaking ratio in manned spacecraft sealing system[J]. Spacecraft Environment Engineering, 2013, 30(6): 606-609.
26 徐向华, 任建勋, 梁新刚, 等. 载人航天器密封舱内空气压力的动态分析[J]. 清华大学学报(自然科学版), 2002, 42(11): 1492-1495.
Xu X H, Ren J X, Liang X G, et al. Dynamic analysis of the cabin atmosphere in a manned spacecraft[J]. J. Tsinghua Univ. (Sci. & Tech.), 2002, 42(11): 1492-1495.
27 黄家荣, 范含林. 载人航天器生活舱内湿度场的稳态数值模拟[J]. 宇航学报, 2005, 26(3): 349-353.
Huang J R, Fan H L. Steady numerical simulation for the humidity distribution in manned spacecraft habitation cabin[J]. Journal of Astronautics, 2005, 26(3): 349-353.
28 卜珺珺, 曹军, 杨晓林. 国际空间站舱内空气温湿度控制技术综述[J]. 航天器环境工程, 2013, 30(1): 20-25.
Bu J J, Cao J, Yang X L. Overview of cabin air temperature and humidity control techniques in International Space Station[J]. Spacecraft Environment Engineering, 2013, 30(1): 20-25.
29 宁献文, 张加迅, 赵欣. 卫星流体回路技术的动态热模型与仿真[J]. 航天器工程, 2007, 16(6): 51-56.
Ning X W, Zhang J X, Zhao X. Dynamical thermal model and simulation of satellite fluid loop[J]. Spacecraft Engineering, 2007, 16(6): 51-56.
30 黄家荣, 范宇峰, 范含林.载人运输飞船流体回路试验研究[J]. 中国空间科学技术, 2010, 1: 65-71.
Huang J R, Fan Y F, Fan H L. Experiment study of fluid loop system on manned spaceship[J]. Chinese Space Science and Technology, 2010, 1: 65-71.
31 靳健, 侯永青, 杨雷. 载人航天器大气环境控制系统性能集成分析[J]. 航天器环境工程, 2013, 30(4): 380-387.
Jin J, Hou Y Q, Yang L. Integrated analysis of characteristics of the air environment control system of manned spacecraft[J]. Spacecraft Environment Engineering, 2013, 30(4): 380-387.
[1] 罗坤, 毛晓东, 庞丽萍. 新型直升机热泵空调系统驾驶舱热控性能[J]. 化工学报, 2020, 71(S1): 187-193.
[2] 郭晓雨, 田喆, 牛纪德, 祝捷. 基于分时电价的区域管网系统储能应用研究[J]. 化工学报, 2020, 71(S1): 293-299.
[3] 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321.
[4] 徐刚, 庞丽萍. 特种车辆舱室送风系统布局仿真优化[J]. 化工学报, 2020, 71(S1): 335-340.
[5] 周月, 张鹤林, 程定斌, 尹俊成. 典型空气循环制冷系统仿真研究[J]. 化工学报, 2020, 71(S1): 341-345.
[6] 郭栋才, 盛强, 杨鹏, 徐捷, 王泽, 杨波, 曹娇坤. 基于热电效应的高效环控系统[J]. 化工学报, 2020, 71(S1): 404-410.
[7] 杨东升, 阿嵘, 张建斌, 王大鹏, 张斌, 徐迎丽, 秦俊杰, 刘淑芬. 航天器舱内环境下非金属增材制造热效应分析[J]. 化工学报, 2020, 71(S1): 486-493.
[8] 王靖, 康丽霞, 刘永忠. 化工系统消纳可再生能源的电-氢协调储能系统优化设计[J]. 化工学报, 2020, 71(3): 1131-1142.
[9] 潘帅, 纪常伟, 汪硕峰, 王兵, 孙洁洁, 戚朋飞. 废旧三元动力电池电热特性的实验研究[J]. 化工学报, 2020, 71(3): 1297-1309.
[10] 王磊, 陈玉婷, 徐燕燕, 叶爽, 黄伟光. 综合考虑经济性与效率的换热网络多目标约束优化方法[J]. 化工学报, 2020, 71(3): 1189-1201.
[11] 张鹏,陈赞,吴洪,张润楠,杨磊鑫,游昕达,安珂,姜忠义. 石墨烯基CO2分离膜通道微环境调控研究进展[J]. 化工学报, 2020, 71(1): 54-67.
[12] 尹应德, 朱冬生, 刘世杰, 叶周, 王飞扬. 双缸滚动转子式压缩机采暖热泵低温制热性能[J]. 化工学报, 2019, 70(S2): 220-227.
[13] 万忠民,全文祥,阎瀚章,陈曦,黄泰明,张焱,张敬,孔祥忠. 无人机用燃料电池系统性能分析[J]. 化工学报, 2019, 70(S2): 329-335.
[14] 王永良, 杨晓玲, 董永霞, 杜英超, 刘翔, 韩培伟, 叶树峰. pH调整剂对含砷酸性废水中氧化Fe(Ⅱ)共沉淀固砷行为的影响[J]. 化工学报, 2019, 70(9): 3511-3516.
[15] 梁斌, 白浩隆, 冯强, 宋华, 蓝天, 刘新华. 民用燃煤颗粒物及多环芳烃排放特性[J]. 化工学报, 2019, 70(8): 2888-2897.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .