化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 322-327.doi: 10.11949/0438-1157.20191188

• 过程系统工程 • 上一篇    下一篇

大型民用飞机座舱区域多级温度控制系统的研究

史璐璐()   

  1. 中航工业第一飞机设计研究院,陕西 西安 710089
  • 收稿日期:2019-10-11 修回日期:2020-01-06 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 史璐璐 E-mail:13571909017@163.com

Research of multi-stage temperature control system in large-sized aircraft cabin zone

Lulu SHI()   

  1. AVIC The First Aircraft Institute, Xi an 710089, Shaanxi, China
  • Received:2019-10-11 Revised:2020-01-06 Online:2020-04-25 Published:2020-05-22
  • Contact: Lulu SHI E-mail:13571909017@163.com

摘要:

大型客机温度控制系统对象既有大舱容的延时和滞后,又有小舱容的快速动态反馈的特征;同时流量变化对飞机的性能影响也会带来温度的变化,增加系统控制难度。大型客机的座舱温度控制要保持在舒适区范围内,采用传统控制系统有一定的局限性,需要使用更为先进的控制方法。针对座舱区域温度特点设计一种多级温度控制结构,运用抗饱和PID控制算法的模型进行控制。使得温度控制系统既有控制的快速性,又有迟滞控制的稳定性和抗干扰能力。同时冷路控制采用四轮式空气循环系统的转速代替传统控制中的组件出口温度来控制混合腔温度,避免系统出现结冰等现象时组件出口温度传感器测量不准确引起的系统故障。

关键词: 座舱温度, 多级温度控制, 抗饱和PID, 四轮式空气循环系统, 测量, 混合, 模型

Abstract:

The temperature control system of large-sized aircraft has both delay and delay of large cabin capacity and fast dynamic feedback of small cabin capacity. At the same time, the influence of the flow rate on the performance of the aircraft will also bring about temperature changes, which will increase the difficulty of system control. In order to keep the cabin temperature control in the comfort zone of large passenger aircraft, the traditional control system has some limitations, and more advanced control methods are needed. In this paper, a multi-stage temperature control structure is designed according to the temperature characteristics of cabin area. The design scheme of the anti-windup PID control model is used to control the system.The temperature control system has the speed of control, stability of hysteresis control and anti-interference ability. At the same time, the cold road control uses the speed of the four-wheel air circulation system to replace the component outlet temperature to control the temperature of the mixing chamber in the traditional control to avoid system failure caused by inaccurate measurement of the component outlet temperature sensor when icing and other phenomena occur in the system.

Key words: cabin temperature, multi-stage temperature control, anti-windup PID, four-wheel air circulation, measurement, mixing, model

中图分类号: 

  • V 245.3

图1

混合腔温度控制、四轮式空气循环温度控制原理"

图2

区域温度控制原理"

图3

多级温度控制逻辑图"

图4

控制器构型图"

图5

饱和PID结构图"

图6

压气机出口温度、混合腔温度试验曲线"

图7

区域温度试验"

1 朱春玲.飞行器环境控制与安全救生[M]. 北京: 北京航空航天大学出版社, 2006: 322-332.
Zhu C L. Aircraft Environmental Control and Life Saving [M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2006: 322-332.
2 陈元先. 旅客机环境控制系统的发展[J]. 航空学报, 1999, 20(S1): 8-10.
Chen Y X. Evolution of the environment control system for commercial aircraft [J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(S1): 8-10.
3 Eichler J. Simulation study of an aircraft s environmental control system dynamic response[J]. Journal of Aircraft, 2002, 18: 1856-1867.
4 宋静波. B737-800型飞机座舱温度控制系统及其技术特点[J]. 西安航空技术高等专科学院学报, 2002, 20(3): 3-5.
Song J B. Cabin temperature control system and technical characteristics of Boeing 737(800) airplane[J]. Journal of Xi an Aerotechnical College, 2002, 20(3): 3-5.
5 何君, 赵竞全, 袁修干. 高压除水环境控制系统的解耦控制[J]. 北京航空航天大学学报, 2002, 28(2): 225-227.
He J, Zhao J Q, Yuan X G. Decoupling control of aircraft environmental control system with high pressure water separation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(2): 225-227.
6 屠毅, 林贵平. 大型飞机座舱温度控制系统仿真研究[J]. 航空学报, 2011, 32(1): 49-57.
Tu Y, Lin G P. Simulation of the large scale aircraft cabin temperature control system [J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1): 49-57.
7 Nazmi E, Novruz A, Ibrahim U S, et al. Fuzzy expert system design for operating room air-condition control systems [J]. Expert Systems with Applications, 2009, 36: 9753-9758.
8 韦巍. 智能控制技术[M]. 北京: 机械工业出版社, 2010: 1-30.
Wei W. Intelligent Control Technique[M]. Beijing: Mechanical Industry Press, 2000: 1-30.
9 Soygder S, Alli H. An expert system for humidity and temperature control in HVAC systems using ANFIS and optimization with fuzzy modeling approach[J]. Energy and Buildings, 2009, 41(8): 814-822.
10 Etik M, Allahverdi N, Sert I U, et al. Fuzzy expert system design for operating room air-condition control system[J]. Expert Systems with Application, 2009, 36(6): 9753-9758.
11 刘金琨. 智能控制[M]. 北京: 电子工业出版社, 2009: 1-60.
Liu J K. Intelligent Control [M]. Beijing: Publishing House of Electronics Industry, 2009: 1-60.
12 张化光, 孟祥萍. 智能控制基础理论及应用[M]. 北京: 北京机械工业出版社, 2005: 129-133.
Zhang H G, Meng X P. Basic Theory and Application of Intelligent Control [M]. Beijing: Beijing Machinery Industry Press, 2005: 129-133.
13 何君, 赵竞全, 袁修干.飞机环境控制系统的模糊控制研究[J]. 北京航空航天大学学报, 2004, 30(12): 1511-1514.
He J, Zhao J Q, Yuan X G. Fuzzy control of aircraft environmental control system [J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(12): 1511-1514.
14 Yoo B K, Ham W C. Adaptive control of robot manipulator using fuzzy compensator[J]. IEEE Transaction on Fuzzy Systems, 2000, 8(2): 186-199.
15 Lygouras J N, Botsaris P N, Vourvoulakis J, et al. Fuzzy logic controller implementation for a solar air-conditioning system [J].Applied Energy, 2007, 84: 1305-1318.
16 姚洪伟, 王浚. 歼击机环境控制系统控制性能分析[J]. 中国工程科学, 2006, 8(6): 44-47.
Yao H W, Wang J. Analysis of control performance of ECS in fighter plane[J]. Engineering Science, 2006, 8(6): 44-47.
17 袁修干. 旅客机空气参数调节[M]. 北京: 国防出版社, 1980: 1-55.
Yuan X G. Airlines Cabin Air Conditioning[M]. Beijing: National Defense Industry Press, 1980: 1-55.
18 Servet S, Hasan A. An expert system for the humidity and temperature control in HVAC systems using ANFIS and optimization with fuzzy modeling approach[J]. Energy and Buildings, 2009, 41: 814-822.
19 杨锋, 袁修干. 基于Matlab的飞机环境控制系统动态仿真[J]. 系统仿真学报, 2002, 14(6): 782-784.
Yang F, Yuan X G. Dynamic simulation of aircraft environmental control system based on Matlab[J]. Journal of System Simulation, 2002, 14(6): 782-784.
20 何君, 赵竞全, 孙薇. 航空升压式空气循环制冷组件动态特性的仿真研究[J]. 系统仿真学报, 2004, 16(4): 727-729.
He J, Zhao J Q, Sun W. Simulation study on dynamic characteristics of aeronautical boost air cycle refrigeration module [J]. Journal of System Simulation, 2004, 16(4): 727-729.
21 赵俊茹, 史忠科. 飞机环境控制系统的仿真研究[J]. 计算机测量与控制, 2005, 13(6): 542-544.
Zhao J R, Shi Z K. Simulation of aircraft environmental control system [J]. Computer Measurement and Control, 2005, 13(6): 542-544.
22 于浩洋, 初红霞, 王希凤. MATLAB实用教程——控制系统仿真与应用[M]. 北京: 化学工业出版社, 2009: 1-60.
Yu H Y, Chu H X, Wang X F. MATLAB Practical Course—Control System Simulation and Application[M]. Beijing: Chemical Industry Press, 2009: 1-60.
23 He J. Dynamic simulation of the aircraft environment control system[J]. Chinese Journal of Aeronautics, 1975, 12(10): 757-758.
24 李可, 庞丽萍, 刘旺开, 等. 环境模拟舱体的建模仿真与控制方法[J]. 北京航空航天大学学报, 2007, 33(5): 535-538.
Li K, Pang L P, Liu W K, et al. System model simulation and control method used in environment simulation chambers[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(5): 535-538.
25 宁献文, 张丽珍, 王浚. 旅客机座舱热舒适动态特性仿真[J]. 航空学报, 2006, 27(4): 551-555.
Ning X W, Zhang L Z, Wang J. Simulation of dynamics characteristics for airlines cabin thermal comfort [J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(4): 551-555.
26 Tatem A, Hay S, Rogers D. Global traffic and disease vector dispersal[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(16): 6242-6247.
27 Ko G, Thompson K. Estimation of tuberculosis risk on a commercial airliner[J]. Risk Anal., 2004, 24(2): 379-388.
28 刘金琨. 先进PID控制及其MATLAB仿真[M]. 北京: 电子工业出版社, 2003: 63-67.
Liu J K. Advanced PID Control and Simulation of MATLAB [M]. Beijing: Publishing House of Electronics Industry, 2003: 63-67.
29 邢用忠, 徐志良, 张少杰, 等. 大型低温环境模拟试验系统Smith模糊专家PID控制算法实现[J]. 兵工学报, 2008, 29 (12): 1522-1526.
Xing Y Z, Xu Z L, Zhang S J, et al. Implementation of Smith-fuzzy-expert PID algorithm for low temperature environment simulation test system[J]. Acta Armamentrii, 2008, 29(12): 1522-1526.
[1] 张兵, 魏利平, 滕海鹏. 隔板式内循环流化床压力脉动信号递归分析[J]. 化工学报, 2020, 71(S1): 106-113.
[2] 裴后举, 蒋彦龙, 施红, 崔永龙, 陈常栋, 钱晓辉. 基于M-L湍流模型的浮空器强迫对流换热[J]. 化工学报, 2020, 71(S1): 136-141.
[3] 黎义斌, 宋亚娟, 歹晓晖, 李正贵. 不同推进式桨叶对搅拌反应器内气液两相混合特性的影响[J]. 化工学报, 2020, 71(S1): 227-235.
[4] 张绍志, 李扬, 徐以洋, 郑幼明, 栾天, 卢衡. 基于红外测温的文物冷冻干燥监测技术[J]. 化工学报, 2020, 71(S1): 245-251.
[5] 毛海涛, 王璐, 许志颖, 解万翠, 都健, 张磊. 基于分子表面电荷密度分布与机器学习的混合物设计方法研究[J]. 化工学报, 2020, 71(S1): 282-292.
[6] 方黄峰, 刘瑶瑶, 张文彪. 基于LSTM神经网络的流化床干燥器内生物质颗粒湿度预测[J]. 化工学报, 2020, 71(S1): 307-314.
[7] 马慧才, 刘毅玲, 党晓民. 高空长航时无人机综合热能管理的构型分析[J]. 化工学报, 2020, 71(S1): 417-424.
[8] 马德胜, 庞丽萍, 毛晓东, 董素君. 机载综合环控系统的热管理[J]. 化工学报, 2020, 71(S1): 436-440.
[9] 李攀, 孔慧, 宋卓栋, 张作毅, 王云芳. 甲醇-甲醛-聚甲氧基二甲醚三元体系汽液平衡[J]. 化工学报, 2020, 71(S1): 7-14.
[10] 贾亚宾, 郑旭, 高凯, 关军, 魏翩, 祁冰, 郑慧研. 某高校既有建筑室内人员相关VOCs目标污染物的实测分析[J]. 化工学报, 2020, 71(S1): 411-416.
[11] 周星宇, 曾凡桂, 相建华, 邓小鹏, 相兴华. 马脊梁镜煤有机质大分子模型构建及分子模拟[J]. 化工学报, 2020, 71(4): 1802-1811.
[12] 王志奇, 贺妮, 罗兰, 夏小霞, 左青松. 水平管内R245fa/R141b沸腾换热特性的实验研究[J]. 化工学报, 2020, 71(4): 1588-1596.
[13] 王金红, 陈志, 刘凡, 李建明. 密封环支撑边界条件对机械密封端面变形的影响[J]. 化工学报, 2020, 71(4): 1744-1753.
[14] 明勇, 彭艳楠, 苏文, 魏国龙, 王强, 周乃君, 赵力. 闭式热源下混合工质与纯工质的ORC性能比较[J]. 化工学报, 2020, 71(4): 1570-1579.
[15] 关宏伟, 叶凌箭, 沈非凡, 顾德, 宋执环. 基于经济模型预测控制的金氰化浸出过程动态实时优化[J]. 化工学报, 2020, 71(3): 1122-1130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .