化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 245-251.doi: 10.11949/0438-1157.20191180

• 流体力学与传递现象 • 上一篇    下一篇

基于红外测温的文物冷冻干燥监测技术

张绍志1(),李扬1,徐以洋2,郑幼明3(),栾天3,卢衡3   

  1. 1.浙江大学制冷与低温研究所,浙江 杭州 310027
    2.中国电建集团华东勘测设计研究院有限公司,浙江 杭州 310014
    3.浙江省博物馆,浙江 杭州 330106
  • 收稿日期:2019-10-11 修回日期:2019-11-06 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 郑幼明 E-mail:enezsz@zju.edu.cn;zheng_youming@126.com
  • 作者简介:张绍志(1972—),男,博士,副教授,enezsz@zju.edu.cn
  • 基金资助:
    浙江省文物保护科技项目(2017008)

Freeze-drying monitoring technology of cultural relics based on infrared temperature measurement

Shaozhi ZHANG1(),Yang LI1,Yiyang XU2,Youming ZHENG3(),Tian LUAN3,Heng LU3   

  1. 1.Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, Zhejiang, China
    2.Huadong Engineering Corporation Limited, Power Construction Corporation of China, Hangzhou 310014, Zhejiang, China
    3.Zhejiang Provincial Museum, Hangzhou 330106, Zhejiang, China
  • Received:2019-10-11 Revised:2019-11-06 Online:2020-04-25 Published:2020-05-22
  • Contact: Youming ZHENG E-mail:enezsz@zju.edu.cn;zheng_youming@126.com

摘要:

为了给大型、大批量文物的冷冻干燥保驾护航,以饱水木质文物为样品,结合红外温度传感器和红外热像仪,对文物的冷冻过程进行温度监控。结果表明,红外温度传感器对样品表面温度变化十分灵敏,能有效跟踪温度的动态变化过程,但测量准确性会受样品发射率、环境波动等因素的影响。红外热像仪经发射率标定后可达到较高的测量精度,利用热成像得到的图像,可直观地筛查样品表面的最高/最低温度区。经过分析,样品在靠近仓内换热器端的位置,表面温度较低,靠近仓门的位置,表面温度较高,且样品上表面温度略低于侧面温度。根据红外测温结果,预期能给出冷冻干燥设备控制的建议,降低文物冻干失败的风险,减轻文保工作者的工作负担。

关键词: 红外, 温度分布, 成像, 测量, 文物, 冷冻干燥

Abstract:

Many saturated cultural relics unearthed in the south need dehydration. The application of freeze-drying technology can effectively eliminate the cracking caused by the surface tension of liquid water. The material temperature is a process parameter that needs to be strictly controlled during the freeze-drying process. Due to the indivisible and irregular shape of cultural relics, the temperature in the different area of cultural relics is not uniform, resulting in inconsistent freeze-drying progress. In order to guarantee the success of the freeze-drying process of large-scale and multitudinous cultural relics, saturated woody cultural relic is taken as sample, infrared temperature sensor and thermal imager are combined together to monitor temperature of the freezing process of cultural relics. The results show that the infrared temperature sensor is very sensitive to the change of surface temperature of the sample, and can effectively track the dynamic process of temperature, but the accuracy of temperature measurement will be affected by the change of sample emissivity and environmental fluctuation. The infrared camera can achieve high measurement accuracy by calibrating the emissivity, and the temperature distribution map can be used to screen the highest/lowest temperature region on the entire surface of the sample. After the analysis of the temperature data, the surface temperature is low when the sample is close to the heat exchanger end of the chamber, and the surface temperature is high near the position of the door, besides, the upper surface temperature of the sample is slightly lower than the side temperature of the sample. The infrared temperature measurements are anticipated to give hints for the control of freeze-drying equipment, thus to reduce the risk of freezing drying failure, and relieve the workload of cultural relics protection staffs.

Key words: infrared, temperature distribution, imaging, measurement, cultural relics, freeze drying

中图分类号: 

  • TK 39

图1

冷冻干燥实验装置示意图"

图2

实验装置现场实物图"

图3

红外温度传感器及其保护罩"

图4

温度信号采集与转换模块示意图"

图5

冷冻过程中样品各测温点的温度变化"

图6

冷冻过程中样品上表面和侧面的温度对比"

图7

红外热像仪拍摄得到的样品冷冻过程中的热图"

1 徐成海, 邹惠芬. 真空冷冻干燥技术的现状及发展趋势[J]. 真空与低温, 2000, (2): 71-74.
Xu C H, Zou H F. Current status and development trend of vacuum freeze drying technology[J]. Vacuum and Cryogenics, 2000, (2): 71-74.
2 房星星, 吕晓东. 真空冷冻干燥技术的应用研究[J]. 食品与药品, 2007, 9(8): 57-60.
Fang X X, Lyu X D. Application research of vacuum freeze-drying technology[J]. Food and Medicine, 2007, 9(8): 57-60.
3 吴东波, 张绍志, 陈光明. 饱水木质文物的冷冻干燥保存研究进展[C]//第九届全国冷冻干燥学术交流会. 2008.
Wu D B, Zhang S Z, Chen G M. Development in conservation of waterlogged archaeological wooden artifacts by freeze-drying[C]// The 9th National Freeze-drying Academic Exchange. 2008.
4 张绍志, 房园园, 虞效益, 等. 木质文物真空冷冻干燥的实验研究[J]. 真空, 2011, 48(1): 75-77.
Zhang S Z, Fang Y Y, Yu X Y, et al. Experimental study on vacuum freeze-drying process for archaeological wooden artifacts[J]. Vacuum, 2011, 48(1): 75-77.
5 丁正斌, 周永安. 冷冻干燥工艺探讨[J]. 冷藏技术, 1996, (1): 35-39.
Ding Z B, Zhou Y A. Discussion on freeze-drying process[J]. Refrigeration Technology, 1996, (1): 35-39.
6 周永安, 张奕. 温度智能仪在真空冷冻干燥机中的应用[J]. 真空电子技术, 1997, (5): 32-34.
Zhou Y A, Zhang Y. Application of the temperature intelligent instrument in vacuum freeze drying plants[J]. Vacuum Electronics, 1997, (5): 32-34.
7 吕开斌, 周健, 刘云秀. 真空冷冻干燥的检测与控制探讨[J]. 四川食品与发酵, 2005, (4): 58-60.
Lyu K B, Zhou J, Liu Y X. Exploration into examining and controlling of freeze-drying in vacuum[J]. Sichuan Food and Fermentation, 2005, (4): 58-60.
8 李敏, 蒋小强, 叶彪. 罗非鱼真空冷冻干燥过程及其升华干燥能耗的实验研究[C]//中国制冷学会学术年会. 2007.
Li M, Jiang X Q, Ye B. Study on the freeze-dried energy consumption of tilapia vacuum freeze-drying[C]//Chinese Refrigeration Society Academic Annual Conference. 2007.
9 陈大林, 任祖平. 基于单片机的真空冷冻干燥试验仪温度控制器设计[J]. 可编程控制器与工厂自动化, 2007, (11): 79-81.
Chen D L, Ren Z P. Design of temperature controller for the tester of vacuum freeze-drying technique based on single-chip microcomputer[J]. Programmable Controller & Factory Automation, 2007, (11): 79-81.
10 杨健. 探讨冻干机温度均匀性验证方法[J]. 科技资讯, 2014, 12(21): 89-90.
Yang J. Discussion on verification method of temperature uniformity of freeze dryer[J]. Science & Technology Information, 2014, 12(21): 89-90.
11 邹同华, 孙颖, 苏树强, 等. 真空冷冻干燥过程中升华界面温度的动压测量技术[J]. 农业机械学报, 2008, 39(1): 198-201.
Zou T H, Sun Y, Su S Q, et al. Dynamic pressure measurement technology for sublimation interface temperature in vacuum freeze-drying process[J]. Journal of Agricultural Machinery, 2008, 39(1): 198-201.
12 Chen Q, Zhang C, Zhao J, et al. Recent advances in emerging imaging techniques for non-destructive detection of food quality and safety[J]. TrAC Trends in Analytical Chemistry, 2013, 52: 261-274.
13 Lietta E, Colucci D, Distefano G, et al. On the use of infrared thermography for monitoring a vial freeze-drying process[J]. Journal of Pharmaceutical Sciences, 2018, 108: 391-398.
14 Gonçalves B J, Lago A M T, Machado A A, et al. Infrared (IR) thermography applied in the freeze-drying of gelatin model solutions added with ethanol and carrier agents[J]. Journal of Food Engineering, 2018, 221: 77-87.
15 Emteborg H, Zeleny R, Charoud-Got J, et al. Infrared thermography for monitoring of freeze-drying processes: instrumental developments and preliminary results[J]. Journal of Pharmaceutical Sciences, 2014, 103(7): 2088-2097.
16 李晶. 温度传感器在真空冻干设备中的应用与研究[J]. 低温与特气, 2009, 27(3): 42-45.
Li J. Temperature sensor supply of vacuum freeze-drying equipment[J]. Cryogenics and Specialty Gases, 2009, 27(3): 42-45.
17 Vadivambal R, Jayas D S, Chelladurai V, et al. Temperature distribution studies in microwave-heated grains using a thermal camera (RRV-07100[C]// ASABE Annual Meeting. North Dakota, 2007.
18 Gan-Mor S, Regev R, Levi A, et al. Adapted thermal imaging for the development of postharvest precision steam-disinfection technology for carrots[J]. Postharvest Biology and Technology, 2011, 59(3): 265-271.
19 Goncalves B J, Giarola T M O, Pereira D F, et al. Using infrared thermography to evaluate the injuries of cold-stored guava[J]. Journal of Food Science and Technology, 2016, 53(2): 1063-1070.
20 Sylvester B, Porfire A, van Bockstal P J, et al. Formulation optimization of freeze-dried long-circulating liposomes and in-line monitoring of the freeze-drying process using an NIR spectroscopy tool[J]. Journal of Pharmaceutical Sciences, 2018, 107: 139-148.
[1] 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186.
[2] 史璐璐. 大型民用飞机座舱区域多级温度控制系统的研究[J]. 化工学报, 2020, 71(S1): 322-327.
[3] 贾亚宾, 郑旭, 高凯, 关军, 魏翩, 祁冰, 郑慧研. 某高校既有建筑室内人员相关VOCs目标污染物的实测分析[J]. 化工学报, 2020, 71(S1): 411-416.
[4] 杜宇浩, 阎高伟, 李荣, 王芳. 基于局部线性嵌入的测地线流式核多工况软测量建模方法[J]. 化工学报, 2020, 71(3): 1278-1287.
[5] 杨锋苓, 张翠勋, 李美婷. 柔性Rushton搅拌桨混合性能的实验研究[J]. 化工学报, 2020, 71(2): 626-632.
[6] 马金凤, 曾玺, 王芳, 康国俊, 武荣成, 许光文. 煤红外快速热解过程中床层对二次反应的影响[J]. 化工学报, 2020, 71(2): 736-745.
[7] 黄正梁, 王超, 李少硕, 杨遥, 孙婧元, 王靖岱, 阳永荣. 基于深度学习的气液固三相反应器图像分析方法及应用[J]. 化工学报, 2020, 71(1): 274-282.
[8] 宋思婕,姚加,李浩然. 离子液体汽化焓的测量方法[J]. 化工学报, 2020, 71(1): 26-33.
[9] 孟凡斌, 段卜月, 李栋, 王迪, 吕妍. 管道高温壁面辐射对激光测量天然气含水量影响分析[J]. 化工学报, 2019, 70(S2): 215-219.
[10] 孙艳军, 邸高雷, 夏娟, 王晓坡, 龚娜. 不同冷冻润滑油对HFO1234yf溶解吸收特性的研究[J]. 化工学报, 2019, 70(S2): 25-30.
[11] 侯延彬,高宪文,李翔宇. 采油过程多尺度状态特征生成的有杆泵动态液面预测[J]. 化工学报, 2019, 70(S2): 311-321.
[12] 钟秋,杨莉萍,陶冶,雒彩云,徐子君,汪文兵. 磁环境温度测量信号偏差实验研究[J]. 化工学报, 2019, 70(S2): 349-355.
[13] 张中印,袁诚阳,樊轩辉,祝捷,赵佳飞,唐大伟. 基于TDTR技术水合物热导率测量方法[J]. 化工学报, 2019, 70(S2): 54-61.
[14] 于帆,张欣欣. 脉冲式平面热源法测量材料热导率和热扩散率的分析与实验[J]. 化工学报, 2019, 70(S2): 70-75.
[15] 侯德鑫,陈玥,叶树亮. 基于热成像的背胶石墨膜面向热导率测试方法[J]. 化工学报, 2019, 70(S2): 76-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .