化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 293-299.doi: 10.11949/0438-1157.20191155

• 过程系统工程 • 上一篇    下一篇

基于分时电价的区域管网系统储能应用研究

郭晓雨(),田喆(),牛纪德,祝捷   

  1. 天津大学环境科学与工程学院,天津 300350
  • 收稿日期:2019-10-10 修回日期:2019-11-04 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 田喆 E-mail:guoxiaoyu@tju.edu.cn;tianzhe@tju.edu.cn
  • 作者简介:郭晓雨(1994—),女,硕士研究生,guoxiaoyu@tju.edu.cn
  • 基金资助:
    国家重点研发计划项目(2017YFC0702203)

Study on energy storage of regional pipe network system based on time-of-use pricing

Xiaoyu GUO(),Zhe TIAN(),Jide NIU,Jie ZHU   

  1. College of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
  • Received:2019-10-10 Revised:2019-11-04 Online:2020-04-25 Published:2020-05-22
  • Contact: Zhe TIAN E-mail:guoxiaoyu@tju.edu.cn;tianzhe@tju.edu.cn

摘要:

区域供冷系统主要分为源、网、用户三部分,其中管网不仅可以作为能量输送环节,还可以实现能量的储存,因此可以利用管网的储能效应实现制冷站与电网的互动。以广东惠州某园区制冷站为例,基于Modelica语言在Dymola平台上搭建了区域供冷系统。基于分时电价,应用管网的储热与延迟特性,提出三种控制策略以探讨热网在电力响应中的应用。仿真结果显示,在案例中管网储热维持室温的效果为0.31 h,利用管网储热能够使供冷系统节省6.4%的电耗和6.7%的电费,可见管网的虚拟储能效应是制冷站参与电网需求响应的重要资源。

关键词: 区域供冷, 动态仿真, 过程控制, 间歇式, 管网储能, 分时电价

Abstract:

The regional cooling system is mainly divided into three parts: source, network and users. The pipe network can not only link the source and users, but also realize energy storage. Therefore, the energy storage effect of pipe network can be used to realize the interaction between refrigeration station and power grid. Taking the refrigeration station of a industrial park located in Guangzhou as an example, this paper builds a regional cooling system based on Dymola platform and Modelica language. Based on time-of-use pricing, three control strategies are proposed based on the characteristics of heat storage and delay of pipeline network to explore the application of heat network in power response. Results show that, the effect of the network storage maintained at room temperature is 0.31 h. The use of pipe network heat reduce power consumption by 6.4% and 6.7% of electricity. Visibly network effect is an important resource in power grid demand response.

Key words: district cooling, dynamic simulation, process control, batchwise, network storage, time-of-use pricing

中图分类号: 

  • TU 85

图1

供冷系统原理图"

图2

区域管网系统仿真图"

图3

方案(1)、(2)、(3)控制流程图(①、②、③分别代表方案(1)、(2)、(3)的部分控制流程)"

图4

园区一天的室外温度曲线"

表1

惠州分时电价"

电价时段

价格/

(CNY/(kW·h))

时段
高峰1.160914:00~17:00、19:00~22:00
平段0.70368:00~14:00、17:00~19:00、22:00~24:00
低谷0.35180:00~8:00

表2

案例供冷系统设备参数"

设备名称设备参数数量

冷水机组

冷冻水进出水温度:13/6℃;冷却水进出水温度32/37℃;

额定制冷量:4610 kW;COP:6.43

4台

冷冻水泵额定流量2246.4 m3/h4台
冷却水泵额定流量3145 m3/h4台
冷却塔额定功率38 kW4台

图5

区域管网拓扑图"

图6

方案a、b、c的各厂房温度"

图7

方案a、b、c的室内温度触发信号"

图8

方案a、b、c的逐时电功率"

图9

方案d室内温度触发信号"

1 Glueck B. Simplified model for exploring dynamic reactions during the operation for network storage[J]. Fernwaerme International, 1983, 12(3): 139-151.
2 石兆玉. 供热系统运行调节与控制[M]. 北京: 清华大学出版社, 1994: 261-303.
Shi Z Y. The Operation of the Heating System[M]. Beijing: Tsinghua University Press, 1994: 261-303.
3 秦冰, 江亿, 付林. 集中供热系统热动态特性研究综述[J]. 煤气与热力, 2003, (11): 694-697.
Qin B, Jiang Y, Fu L. Summarization for research on dynamic performance of centralized heat-supply system[J]. Gas & Heat, 2003, (11): 694-697.
4 秦冰, 江亿, 付林, 等. 集中供热系统热动态特性的测试研究[J]. 煤气与热力, 2005, 25(11): 20-23.
Qin B, Jiang Y, Fu L, et al. Study on test of dynamic thermal performance of centralized heat-supply system[J]. Gas & Heat, 2005, 25(11): 20-23.
5 Pinson P, Nielsen T S, Nielsen H A, et al. Temperature prediction at critical points in district heating systems[J]. European Journal of Operational Research, 2009, 194(1): 163-176.
6 陈路路. 基于负荷预测的集中供热系统能效研究[D]. 济南: 山东建筑大学, 2013.
Chen L L. Study the energy efficiency of central heating systems based on the thermal load forecasting[D]. Jinan: Shandong Jianzhu University, 2013.
7 Liu Z, Yu H, Tang Y, et al. A method to calculate energy station s output in community energy planning considering the attenuation and delay of pipe network[J]. Energy Procedia, 2017, 143: 216-222.
8 刘志渊, 于航, 黄子硕. 考虑管网衰减延迟特性的分布式能源站实时出力计算[J]. 暖通空调, 2017, 47(4): 19-22.
Liu Z Y, Yu H, Huang Z S. Prediction approach of hourly output of energy station in distributed energy system based on attenuation and delay features of pipe network[J]. Heating Ventilating & Air Conditioning, 2017, 47(4): 19-22.
9 刘海静, 潘毅群. 区域建筑群负荷预测及其平准化分析[J]. 暖通空调, 2017, 47(4): 14-18.
Liu H J, Pan Y Q. Load prediction and leveling analysis for community buildings[J]. Heating Ventilating & Air Conditioning, 2017, 47(4): 14-18.
10 陈长明. 城市供热系统二级网建模与动态特性分析[D]. 杭州: 浙江大学, 2017.
Chen C M. Urban heating system of the secondary network modeling and dynamic analysis[D]. Hangzhou: Zhejiang University, 2017.
11 靳超. 集中供热系统储热及热负荷预测的动态模型研究[D]. 北京: 华北电力大学, 2017.
Jin C. Study on the capacity of central heating and electric heating based on thermal scheduling to consume wind power [D]. Beijing: North China Electric Power University, 2017.
12 Chua K J, Chou S K, Yang W M, et al. Achieving better energy-efficient air conditioning—a review of technologies and strategies[J]. Appl. Energy, 2013, 104: 87-104.
13 Gelazanskas L, Gamage K A A. Demand side management in smart grid: a review and proposals for future direction[J]. Sustainable Cities and Society, 2014, 11: 22-30.
14 崔强, 王秀丽, 刘祖永. 市场环境下计及储能电站运行的联动电价研究及其效益分析[J]. 中国电机工程学报, 2013, 33(13): 62-68.
Cui Q, Wang X L, Liu Z Y. Study on linkage electricity price and benefit analysis considering energy storage station operation in market environment[J]. Proceedings of the CSEE, 2013, 33(13): 62-68.
15 Aghaei J, Alizadeh M I. Demand response in smart electricity grids equipped with renewable energy sources: a review[J]. Renewable & Sustainable Energy Reviews, 2013, 18: 64-72.
16 任博强, 彭鸣鸿, 蒋传文, 等. 计及风电成本的电力系统短期经济调度建模[J]. 电力系统保护与控制, 2010, 39(5): 37-72.
Ren B Q, Peng M H, Jiang C W, et al. Short-term economic dispatch of power system modeling considering the cost of wind power[J]. Power System Protection and Control, 2010, 39(5): 37-72.
17 何蕾. 基于需求侧综合响应的热电联供型微网运行优化[J]. 电测与仪表, 2018, 55(7): 53-58.
He L. Optimal operation of combined heat and power micro-grid based on integrated demand response[J]. Electrical Measurement & Instrumentation, 2018, 55(7): 53-58.
18 吕泉, 王海霞, 陈天佑, 等. 考虑风电不确定性的热电厂蓄热罐运行策略[J]. 电力系统自动化, 2015, (14): 23-29.
Lyu Q, Wang H X, Chen T Y, et al. Operation strategies of heat accumulator in combined heat and power plant with uncertain wind power[J]. Automation of Electric Power Systems, 2015, (14): 23-29.
19 都健, 杨坡, 刘琳琳, 等. 带有热储罐的间歇过程换热网络综合[J]. 化工学报, 2013, 64(12): 4325-4329.
Du J, Yang P, Liu L L, et al. Heat exchanger network synthesis for batch processes involving heat storages[J]. CIESC Journal, 2013, 64(12): 4325-4329.
20 Zheng C Y, Wu J Y, Zhai X Q, et al. A novel thermal storage strategy for CCHP system based on energy demands and state of storage tank[J]. International Journal of Electrical Power&Energy Systems, 2017, 85: 117-129.
21 Cox S J, Kim D, Cho H, et al. Real time optimal control of district cooling system with thermal energy storage using neural networks[J]. Applied Energy, 2019, 238: 466-480.
22 张琦, 马家琳, 高金彤, 等. 钢铁企业煤气-蒸汽-电力系统耦合优化及应用[J]. 化工学报, 2018, 69(7): 3149-3158.
Zhang Q, Ma J L, Gao J T, et al. Coupled optimization modeling and application of fuel gas-steam-power system in integrated iron and steel works[J]. CIESC Journal, 2018, 69(7): 3149-3158.
23 苏新霞, 周璇卿. 储能应用于需求侧响应的商业模式[J]. 科技与创新, 2017, (19): 5-6.
Su X X, Zhou X Q. Energy storage used in a demand-side response business model[J]. Science and Technology & Innovation, 2017, (19): 5-6.
24 邵世圻, 戴赛, 胡林献, 等. 计及热网特性的电热联合系统调度方法[J]. 电力系统保护与控制, 2018, 46(10): 24-30.
Shao S Q, Dai S, Hu L X, et al. Research on heat-electricity combined scheduling method considering the characteristics of the heating network[J]. Power System Protection and Control, 2018, 46(10): 24-30.
25 Tang R, Wang S W, Shan K, et al. Optimal control strategy of central air-conditioning systems of buildings at morning start period for enhanced energy efficiency and peak demand limiting[J]. Energy, 2018, 151: 771-781.
26 Tang R, Wang S W, Yan C C, et al. A direct load control strategy of centralized air-conditioning systems for building fast demand response to urgent requests of smart grids[J]. Automation in Construction, 2018, 87: 74-83.
27 Sinha S, Chandel S S. Review of software tools for hybrid renewable energy systems[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 192-205.
28 He X, Chen S Q, Lu X L. Simplified model of HVAC load prediction for urban building districts[J]. Procedia Engineering, 2015, 121: 167-174.
29 毕庆生, 李邓超, 朱侃, 等. 基于供热系统热惯性供热机组短时深度参与电网调峰及风电消纳研究[J]. 热能动力工程, 2018, 33(9): 72-78.
Bi Q S, Li D C, Zhu K, et al. In-depth grid power peak regulation with heating unit in wind power consumption based on thermal inertia characteristics [J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(9): 72-78.
30 Hägg R. Dynamic simulation of district heating networks in dymola[D]. Lund: Lund University, 2016.
[1] 罗坤, 毛晓东, 庞丽萍. 新型直升机热泵空调系统驾驶舱热控性能[J]. 化工学报, 2020, 71(S1): 187-193.
[2] 齐玢, 段希希, 阿嵘, 江泓升. 载人航天器环热控一体化仿真分析[J]. 化工学报, 2020, 71(S1): 300-306.
[3] 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321.
[4] 韩宇, 李俊芳, 高强, 田宇, 禹国刚. 基于故障判别增强KECA算法的故障检测[J]. 化工学报, 2020, 71(3): 1254-1263.
[5] 王磊, 陈玉婷, 徐燕燕, 叶爽, 黄伟光. 综合考虑经济性与效率的换热网络多目标约束优化方法[J]. 化工学报, 2020, 71(3): 1189-1201.
[6] 王湘月, 周晓君, 阳春华. 不确定条件下的湿法炼锌除铜过程机会约束优化控制[J]. 化工学报, 2020, 71(3): 1226-1233.
[7] 张璐, 张嘉成, 韩红桂, 乔俊飞. 基于模糊神经网络的污水处理生化除磷过程控制[J]. 化工学报, 2020, 71(3): 1217-1225.
[8] 李晨莹, 刘琳琳, 张磊, 顾偲雯, 都健. 不确定性下基于多工况优化的可控性换热器网络综合[J]. 化工学报, 2020, 71(3): 1154-1162.
[9] 杜宇浩, 阎高伟, 李荣, 王芳. 基于局部线性嵌入的测地线流式核多工况软测量建模方法[J]. 化工学报, 2020, 71(3): 1278-1287.
[10] 赵绍磊, 王耀国, 张腾, 周丽娜, 龚俊波, 汤伟伟. 制药结晶中的先进过程控制[J]. 化工学报, 2020, 71(2): 459-474.
[11] 万忠民,全文祥,阎瀚章,陈曦,黄泰明,张焱,张敬,孔祥忠. 无人机用燃料电池系统性能分析[J]. 化工学报, 2019, 70(S2): 329-335.
[12] 支恩玮, 闫飞, 任密蜂, 阎高伟. 基于迁移变分自编码器-标签映射的湿式球磨机负荷参数软测量[J]. 化工学报, 2019, 70(S1): 150-157.
[13] 宋泽雨, 李国庆, 刘凌轩. 一种新的无模型自适应控制模型参数整定方法[J]. 化工学报, 2019, 70(9): 3430-3440.
[14] 黄冬, 罗雄麟. 化工过程大范围工况变化的工况迁移控制策略判定[J]. 化工学报, 2019, 70(5): 1848-1857.
[15] 杨世品, 黄振, 李丽娟, 宋健全, 叶景, 汪辉. 复杂化工过程失配子模型深度诊断与修正算法[J]. 化工学报, 2019, 70(4): 1485-1493.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .