化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 368-374.doi: 10.11949/0438-1157.20191150

• 能源和环境工程 • 上一篇    下一篇

新型光伏直膨式太阳能/空气能多能互补热泵性能

杜伯尧(),全贞花(),侯隆澍,赵耀华,任海波   

  1. 北京工业大学绿色建筑环境与节能技术北京市重点实验室,北京 100124
  • 收稿日期:2019-10-09 修回日期:2019-11-06 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 全贞花 E-mail:243134149@qq.com;quanzh@126.com
  • 作者简介:杜伯尧(1996—),男,硕士研究生,243134149@qq.com
  • 基金资助:
    国家自然科学基金项目(51778010)

Performance of direct-expansion photovoltaic/thermal(PV/T)-air source heat pump system

Boyao DU(),Zhenhua QUAN(),Longshu HOU,Yaohua ZHAO,Haibo REN   

  1. Beijing Key Laboratory of Green Building Environment and Energy-Saving Technology, Beijing University of Technology, Beijing 100124, China
  • Received:2019-10-09 Revised:2019-11-06 Online:2020-04-25 Published:2020-05-22
  • Contact: Zhenhua QUAN E-mail:243134149@qq.com;quanzh@126.com

摘要:

以平板热管(微热管阵列)为核心部件,设计了一种新型太阳能光伏/空气集热蒸发器并建立了光伏直膨式太阳能/空气能多能互补热泵系统,实现全年供热水、冬季供热、夏季供冷以及全年光伏发电的功能。对北京地区3月至5月天气条件下的热泵系统性能进行不同运行模式(S、SA以及A模式)的实验研究。实验结果表明,在典型工况下S、SA与A模式的多能互补系统COPs分别为4.8、4.2与3.8,综合效率分别为109.7%、125.9%、32.4%,即在有太阳辐照的条件下,S与SA模式下多能互补系统性能优于A模式。该新型光伏直膨式太阳能/空气能多能互补热泵系统性能优良,研究结果为该系统应用提供了基础数据支撑。

关键词: 微热管阵列, 微通道, 太阳能, 直膨式热泵, 多能互补, 再生能源

Abstract:

With flat heat pipe (micro-heat pipe array) as the core component, a new type of PV/T-air collecting evaporator and direct-expansion PV/T-air source heat pump system were designed and built to realize the functions of year-round water heating, winter heating, summer cooling and year-round photovoltaic power production. Experimental study on the performance of heat pump system under the weather conditions from March to May in Beijing was carried out in different operating models (S, SA and A).The experimental results show that the COPS of model S, SA and A is 4.8, 4.2 and 3.8,the η of three models is 109.7%, 125.9% and 32.4% under typical working conditions, which means under the condition of solar irradiation, the performance of the multienergy complementary system in mode S and SA is better than that in mode A. The new heat pump system has a significant performance, and the experimental results provide basic data support for its application.

Key words: micro-heat pipe array, microchannels, solar energy, direct-expansion heat pump, multi-energy complementary, renewable energy

中图分类号: 

  • TK 02

图1

新型太阳能光伏/空气集热蒸发器结构"

图2

多能互补热泵系统"

图3

S模式下环境温度与太阳辐照强度"

图4

S模式下光电效率与集热效率"

图5

S模式集热蒸发器集热功率Qc、热泵制热功率Q与热泵COP"

图6

SA模式下环境温度与太阳辐照强度"

图7

SA模式下光电效率与集热效率"

图8

SA模式下集热蒸发器集热功率Qc、热泵制热功率Q与热泵COP"

图9

A模式下环境温度与太阳辐照强度"

图10

A模式下热泵制热功率Q与COP"

表1

三种运行模式下系统热性能随水温变化(随水温升高而减低)"

运行模式

性能参数

ηt/

(%·℃-1)

Qc/

(W·℃-1)

Q/

(W·℃-1)

COP/

S0.8326.716.70.077
SA1.1526.7200.067
A6.70.07

图11

三种模式下集热、光电与综合效率"

图12

三种模式下热泵COPˉ与多能互补系统COPS"

1 矫洪涛, 王学生, 魏国. 太阳能热泵技术研究进展[J]. 能源技术, 2007, 28(5): 270-274.
Jiao H T, Wang X S, Wei G. Research development of solar assisted heat pump [J]. Energy Technology, 2007, 28(5): 270-274.
2 孔祥强, 林琳, 李瑛, 等. R410A直膨式太阳能热泵热水器性能研究[J]. 浙江大学学报(工学版), 2013, 47(9): 1666-1671.
Kong X Q, Lin L, Li Y, et al. Performance of direct expansion solar assisted heat pump water heater using R410A [J]. Journal of Zhejiang University (Engineering Science), 2013, 47(9): 1666-1671.
3 赵伟强. 直膨式太阳能-空气复合热源热泵热水器的性能优化研究[D]. 南京: 东南大学, 2017.
Zhao W Q. Study on performance optimization of direct expansion on solar-air source heat pump water heater [D]. Nanjing: Southeast University, 2017.
4 蒋澄阳, 代彦军. 基于肋片式集热板的直膨式太阳能热泵[J]. 化工学报, 2016, 67: 319-325.
Jiang C Y, Dai Y J. Direct expansion solar assisted heat pump using novel fin-tube collector/evaporator [J]. CIESC Journal, 2016, 67: 319-325.
5 Kong X Q, Sun P L, Li Y, et al. Experimental studies of a variable capacity direct-expansion solar-assisted heat pump water heater in autumn and winter conditions [J]. Solar Energy, 2018, 170: 352-357.
6 李郁武, 王如竹, 王泰华, 等. 直膨式太阳能热泵热水器运行特性的实验研究[J]. 工程热物理学报, 2006, 27(6): 924-925.
Li Y W, Wang R Z, Wang T H, et al. Experimental study on the operational characteristics of direct expansion solar assisted heat pump water heater [J]. Journal of Engineering Thermophysics, 2006, 27(6): 924-925.
7 孙振华. 直膨式太阳能热泵热水器性能改进及实验研究[D]. 上海: 上海交通大学, 2008.
Sun Z H. Performance improvement and experimental research on a direct expansion solar assisted heat pump water heater [D]. Shanghai: Shanghai Jiao Tong University, 2008.
8 李振兴. 直膨式太阳能热泵热水系统性能的优化分析[D]. 青岛: 山东科技大学, 2010.
Li Z X. Optimizing analysis of the performance of direct expansion solar assisted heat pump water heating system [D]. Qingdao: Shandong University of Science and Technology, 2010.
9 张东. 直膨式太阳能热泵热水器的模拟分析[D]. 青岛: 山东科技大学, 2010.
Zhang D. Simulation analysis on a direct expansion solar assisted heat pump water heater [D]. Qingdao: Shandong University of Science and Technology, 2010.
10 Chen H B, Wei P. Numerical study on a novel photovoltaic_thermal heat pump system [J]. Energy Procedia, 2011, 12: 547-553.
11 Zhao X D, Zhang X X, Saffa B R. Theoretical study of the performance of a novel PV/e roof module for heat pump operation [J]. Energy Conversion and Management, 2011, 52: 603-614.
12 裴刚, 季杰, 刘可亮, 等. 光伏-直膨太阳能热泵系统在变水温工况下的实验研究[J]. 太阳能学报, 2007, 28(6): 588-592.
Pei G, Ji J, Liu K L, et al. Experimental study on of PV-direct expansion solar assisted heat pump under the mode of condesing temperature rising [J]. Acta Energiae Solaris Sinica, 2007, 28(6): 588-592.
13 董科枫. 光伏太阳能热泵的结构优化和变容量控制研究[D]. 南京: 东南大学, 2017.
Dong K F. Study on structure optimization and variable capacity control of photovoltaic/thermal integrated solar heat pump system [D]. Nanjing: Southeast University, 2017.
14 刘可亮. 光伏太阳能热泵的理论和实验研究[D]. 合肥: 中国科学技术大学, 2007.
Liu K L. Theoretical and experimental study on photovoltaic solar assisted heat pump system [D]. Hefei: University of Science and Technology of China, 2007.
15 Ji J, Liu K L, Chow T T. Performance analysis of a photovoltaic heat pump [J]. Applied Energy, 2008, 85: 680-693.
16 Long H, Chow T T, Ji J. Building-integrated heat pipe photovoltaicthermal system for use in Hongkong [J]. Solar Energy, 2017, 155: 1084-1091.
17 Wang Z Y, Qiu F, Yang W S, et al. Experimental investigation of the thermal and electrical performance of the heat pipe BIPV/T system with metal wires [J]. Applied Energy, 2016, 170: 314-323.
18 Zhang B Z, Lü J, Yang H X, et al. Performance analysis of a heat pipe PV/T system with different circulation tank capacities [J]. Applied Thermal Engineering, 2015, 87: 89-97.
19 Pei G, Fu H D, Zhu H J, et al. Performance study and parametric analysis of a novel heat pipe PV/T system [J]. Energy, 2012, 37: 384-395.
20 朱绘娟, 裴刚, 符慧德. 不同管间距热管PV/T系统中光电/光热性能的对比研究[J]. 太阳能学报, 2013, 34(7): 1173-1176.
Zhu H J, Pei G, Fu H D, et al. Comparative research between two different heat pipe spaces PV/T system [J]. Acta Energiae Solaris Sinica, 2013, 34(7): 1173-1176.
21 裴刚, 杨金伟, 张涛. 一种热管平板太阳能集热装置的性能研究[J]. 热科学与技术, 2011, 10(1): 139-141.
Pei G, Yang J W, Zhang T. Research of flat heat pipe solar collector device [J]. Journal of Thermal Science and Technology, 2011, 10(1): 139-141.
22 郑仁春, 裴刚, 胡名科. 重力特性对热管PV/T装置年最佳倾角的影响[J]. 太阳能学报, 2015, 36(12): 2987-2992.
Zheng R C, Pei G, Hu M K. Effect of gravity characteristics on the best inclination of heat pipe PV/T device [J]. Acta Energiae Solaris Sinica, 2015, 36(12): 2987-2992.
23 Meysam M, Seyed M N, Iman A. Application of heat pipe in an experimental investigation on a novel photovoltaic_thermal (PV/T) system [J]. Solar Energy, 2014, 107: 82-88.
24 Chen H B, Zhang L, Jie P F, et al. Performance study of heat-pipe solar photovoltaic thermal heat pump system [J]. Applied Energy, 2017, 190: 960-980.
25 符慧德. 光伏光热综合利用系统的理论和实验研究[D]. 合肥: 中国科学技术大学, 2012.
Fu H D. Numerical and experimental study on a heat pipe photovoltaic/thermal system [D]. Hefei: University of Science and Technology of China, 2012.
26 Fu H D, Zhao T. Performance Analysis of an integrated solar-assisted heat pump system with heat pipe PV/T collectors operating under different weather conditions [J]. Energy Procedia, 2017, 105: 1143-1148.
27 孔祥强, 董山东, 姜开森, 等. 丙烷用于直膨式太阳能热泵实验系统设计[J]. 实验科学与技术, 2019, (3): 6-9.
Kong X Q, Dong S D, Jiang K S, et al. The design of direct expansion solar heat pump experimental system by using propane [J]. Experiment Science and Technology, 2019, (3): 6-9.
28 孔祥强, 高琛, 董山东, 等. 微通道直膨式太阳能热泵实验平台设计与应用[J]. 实验技术与管理, 2017, 12(34): 78-80.
Kong X Q, Gao C, Dong S D, et al. Design and application of experimental platform for micro-channel direct expansion solar energy heat pump [J]. Experimental Technology and Management, 2017, 12(34): 78-80.
29 Zhou J Z, Zhao X D, Ma X L, et al. Experimental investigation of a solar driven direct-expansion heat pump system employing the novel PV/micro-channels-evaporator modules [J]. Applied Energy, 2016, 178: 484-495.
30 赵耀华, 王宏燕, 刁彦华, 等. 平板微热管阵列及其传热特性[J]. 化工学报, 2011, 62(2): 337-343.
Zhao Y H, Wang H Y, Diao Y H, et al. Heat transfer characteristics of flat micro-heat pipe array [J]. CIESC Journal, 2011, 62(2): 337-343.
[1] 刘奎, 王敏杰, 赵丹阳, 王艳色. 聚合物熔体动态黏弹特性微尺度效应实验研究[J]. 化工学报, 2020, 71(S1): 90-97.
[2] 刘子初, 全贞花, 赵耀华, 靖赫然, 姚孟良, 刘新. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128.
[3] 王瑞琪, 高赞军, 杨华, 胡文超, 詹宏波. 机载冷源参数对蒸发循环系统性能的影响[J]. 化工学报, 2020, 71(S1): 212-219.
[4] 张晨宇, 王宁, 徐洪涛, 张剑飞, 曹萌. 基于相变材料的太阳能PV/T系统性能[J]. 化工学报, 2020, 71(S1): 361-367.
[5] 马坤茹, 李雪峰, 李思琦, 高翠娟. 新型太阳能/空气能直膨式热泵与空气源热泵供热性能对比[J]. 化工学报, 2020, 71(S1): 375-381.
[6] 陈琦, 李京坤, 宋昱, 何倩, 李雪芳. 流动聚焦微通道内牛顿微液滴在幂律剪切致稀流体中的生成研究[J]. 化工学报, 2020, 71(4): 1510-1519.
[7] 姚鑫宇, 程潇, 王晗, 沈洪, 吴慧英, 刘振宇. 铜基正弦波微通道内流动沸腾传热特性试验研究[J]. 化工学报, 2020, 71(4): 1502-1509.
[8] 张宝丹, 翟佳羽, 靳海波, 郭晓燕, 杨索和, 何广湘, 马磊. 微通道连续沉淀法制备球形BaTiO3颗粒及其在医学检测干片上的应用[J]. 化工学报, 2020, 71(3): 1370-1379.
[9] 王靖, 康丽霞, 刘永忠. 化工系统消纳可再生能源的电-氢协调储能系统优化设计[J]. 化工学报, 2020, 71(3): 1131-1142.
[10] 刘子炜, 戴诗逸, 段聪, 张志伟, 庞子凡, 朱春英, 付涛涛, 马友光. 台阶式单微通道内气泡生成动力学[J]. 化工学报, 2020, 71(2): 552-565.
[11] 刘静, 朱春英, 周灏, 付涛涛, 马友光. 微通道内浆料体系中的气泡生成特性及尺寸预测[J]. 化工学报, 2020, 71(2): 544-551.
[12] 付涛涛, 朱春英, 马友光. 微通道内卫星液滴生成机理与惯性分离机制[J]. 化工学报, 2020, 71(2): 451-458.
[13] 陈宇超, 崔永晋, 王凯, 骆广生. 阶梯式T型微通道内液滴、气泡分散规律[J]. 化工学报, 2020, 71(1): 265-273.
[14] 王宁, 张晨宇, 徐洪涛, 张剑飞. 填充多级相变材料的套管式储热器性能研究[J]. 化工学报, 2019, 70(S2): 191-200.
[15] 王甜蜜,唐桂华. Janus三角纳米片和“三明治”三角纳米片消光特性的数值研究[J]. 化工学报, 2019, 70(S2): 336-342.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .