化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 194-203.doi: 10.11949/0438-1157.20191145

• 流体力学与传递现象 • 上一篇    下一篇

分流三通气动噪声偶极子声源特性的数值分析

刘雅琳1,2(),王珂1,赵蕾1()   

  1. 1. 西安建筑科技大学建筑设备科学与工程学院,陕西 西安 710055
    2. 西安建筑科技大学西部绿色建筑国家重点实验室,陕西 西安 710055
  • 收稿日期:2019-10-09 修回日期:2019-12-26 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 赵蕾 E-mail:liuyalin@xauat.edu.cn;leizhao0308@hotmail.com
  • 作者简介:刘雅琳(1983—),女,博士,讲师,liuyalin@xauat.edu.cn
  • 基金资助:
    国家自然科学基金项目(51505362);中国博士后科学基金项目(2018M643810XB)

Numerical analysis on aerodynamically generated sound dipole source characteristics of shunt T-elbow

Yalin LIU1,2(),Ke WANG1,Lei ZHAO1()   

  1. 1. School of Building Services Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, Shaanxi, China
    2. State Key Laboratory of Green Building in Western China, Xi’an University of Architecture and Technology, Xi’an 710055, Shaanxi, China
  • Received:2019-10-09 Revised:2019-12-26 Online:2020-04-25 Published:2020-05-22
  • Contact: Lei ZHAO E-mail:liuyalin@xauat.edu.cn;leizhao0308@hotmail.com

摘要:

为研究空调通风系统中因存在三通等局部构件而引起的气流再生噪声产生机理,从声源处对其进行控制,采用声学有限元与计算流体动力学相结合的方法,对分流三通局部管段内气动噪声进行分析,获得了管道内表面气动噪声源的强度及其分布规律。探讨了支管前过渡倾角和支管流量分配比对声源强度与噪声传播特性的影响。研究结果表明:当气流流经分流三通管道时,由湍流运动引起的偶极子声源占主导地位,且主要噪声源位于支管处;在支管入口前增加倾角,可削弱声源强度,减少声波向声场传递的声能量,存在某个最优倾角角度使最大声源强度最低;若仅改变支管流量分配比例,声源强度改变,气动噪声主要声源位置不发生变化。倾角与流量分配比变化会导致管道内流体的非定常涡旋运动改变,从而影响到表面偶极子声源强度与噪声传播。

关键词: 空调系统, 三通气动噪声, 计算流体力学, 湍动, 偶极子声源特性

Abstract:

To explore the generation mechanism of airflow regenerative noise caused by the presence of local components such as T-elbow in duct systems and suppress it from the source, the distribution of aerodynamically generated sound on the inner surface of the local component pipe segment represented by the T-elbow pipe were obtained by using finite element method (FEM) and computational fluid dynamics (CFD) method jointly. The strengths and distributions of the aerodynamic sources on inner surface of T-elbows with different inclination angle of branch pipe and different airflow rate ratio of the branch pipe were investigated. Results show that the dipole source caused by the turbulent motion dominates the noise within the pipeline when the airflow through the T-elbow,and the main noise sources are located along the branch pipe. An inclination angle of 30° at the branch inlet can weaken the sound source intensity to the greatest extent and reduce the sound energy transmitted by the sound wave. A change in the flow rate ratio of the branch pipe can not cause the main positions of the aerodynamic sound source to change, but may bring about the change in intensity of sound source accordingly. The changes in the inclination angle and in flow rate ratio may lead to the change of unsteady vortex motion of the flow in the pipeline, thereby affecting the surface dipole source intensity and noise propagation.

Key words: air conditioning system, T-elbow aerodynamic noise, computational fluid dynamics, turbulence, dipole source characteristics

中图分类号: 

  • TU 831

图1

计算模型"

表1

不同网格方案的相关指标比较"

网格数量/个 a (0,1080,1525) b (0,2060,0)
压力 速度

最大

声压级

压力 速度

最大

声压级

570000 -18.13 4.42 66.40 18.87 6.70 62.44
800000 -17.58 4.40 67.46 18.25 6.71 63.56
1040000 -17.56 4.39 67.49 18.25 6.71 63.60

图2

静压等值线与涡量云图(支管流量占比32%)"

图3

管道内表面偶极子声源分布"

图4

监测点声压级频谱图"

图5

模拟与文献结果对比"

图6

模型二(α=30°)静压等值线和涡量云图(支管流量占比32%)"

图7

不同模型下管道内边界偶极子声源分布"

图8

不同倾角下管道内各频率的声源强度最大值"

图9

模型一与模型二(30°倾角)监测点声压级频谱对比"

图10

压力等值线与涡量云图(支管流量占比20%)"

图11

不同流量比下管道内边界偶极子声源分布"

图12

不同流量比下监测点声压级频谱图"

1 顾强 . 噪声控制工程[M]. 北京: 煤炭工业出版社, 2002: 5.
Gu Q . Noise Control Engineering [M]. Beijing: Coal Industry Press, 2002: 5.
2 马大猷 . 声学手册 [M]. 北京: 科学出版社,2004, 709-736.
Ma D Y . Acoustics Handbook [M]. Beijing: Science Press, 2004: 709-736.
3 Mak C M , To W M , Tai T Y , et al . Sustainable noise control system design for building ventilation systems [J]. Indoor and Built Environment, 2015, 24(1): 128-137.
4 Soeta Y , Shimokura R . Sound quality evaluation of air-conditioner noise based on factors of the autocorrelation function [J]. Applied Acoustics, 2017, 124: 11-19.
5 Wu C J , Liu D P , Pan J . A study of the aerodynamic and acoustic performance of an indoor unit of a DC-inverter split air-conditioner [J]. Applied Acoustics, 2012, 73(4): 415-422.
6 Kim J K . Experimental study on the optimum design of the flow-path system for a low noise indoor package air-conditioner [J]. Journal of Mechanical Science & Technology, 2014, 28(4): 1277-1283.
7 宫武旗, 王芳, 田镇龙, 等 . 叶片锯齿尾缘对降低空调室外机气动噪声影响的试验研究[J]. 工程热物理学报, 2011, 32(10): 1681-1684.
Gong W Q , Wang F , Tian Z L , et al . Experiment study of the effect of serrated blade trailing edge on axial fan noise reduction in an outdoor air conditioner [J]. Journal of Engineering Thermophysics, 2011, 32(10): 1681-1684.
8 沈学明, 谈全彬, 郑智丹 . 空调设备的减振[J]. 噪声与振动控制, 2002, (6): 35-38.
Shen X M , Tan Q B , Zheng Z D . Vibration-reducing in air-conditioning equipment [J]. Noise and Vibration Control, 2002, (6): 35-38.
9 何卓烈, 郭自杰 . 通风、空调系统中气流再生噪声的试验研究及其在消声计算中的应用[J]. 西安交通大学学报, 1987, (2): 67-77.
Hei Z L , Guo Z J . Experimental study on airflow regeneration noise in air conditioning system and its application in noise reduction calculation [J]. Journal of Xi an Jiaotong University, 1987, (2): 67-77.
10 苏宏兵 . 中央空调噪声控制研究与应用[D]. 北京: 清华大学, 2006.
Su H B . Research and application of central air conditioning noise control [D]. Beijing: Tsinghua University, 2006.
11 龚农斌, 陈士杰 . 通风空调系统再生噪声的识别与控制[J]. 噪声与振动控制, 1999, (2): 12-15.
Gong N B , Chen S J . Identification and control of regenerative noise in ventilation and air conditioning systems [J]. Noise and Vibration Control, 1999, (2): 12-15.
12 Holland K R , Davies P O A L . The measurement of sound power flux in flow ducts [J]. Journal of Sound & Vibration, 2000, 230(4): 915-932.
13 Zhu Y W , Zhu F W , Zhang Y S , et al . The research on semi-active muffler device of controlling the exhaust pipe s low-frequency noise [J]. Applied Acoustics, 2017, 116: 9-13.
14 刘丽萍, 肖福明, 陆辰, 等 . 存在气流时消声器消声性能的试验研究[J]. 内燃机工程, 2001, (1): 54-57+61.
Liu L P , Xiao F M , Lu C , et al . The experimental study on the sound elimination performance of mufflers with airflow [J]. Chinese Internal Combustion Engine Engineering, 2001, (1): 54-57+61.
15 李晓东, 江旻, 高军辉, 等 . 计算气动声学进展与展望[J]. 中国科学: 物理学、力学、天文学, 2014, 44(3): 234-248.
Li X D , Jiang M , Gao J H , et al . Progress and prospective of computational aeroacoustics [J]. Sci. Sin.-Phys. Mech. Astron., 2014, 44(3): 234-248.
16 Cao Y , Ke H , Lin Y , et al . Investigation on the flow noise propagation mechanism in pipelines of shell-and-tube heat exchangers based on synergy principle of flow and sound fields [J]. Applied Thermal Engineering, 2017, 122: 339-349.
17 Mori M , Masumoto T , Ishihara K . Study on acoustic, vibration and flow induced noise characteristics of T-shaped pipe with a square cross-section [J]. Applied Acoustics, 2017, 120: 137-147.
18 白长安, 陈天宁, 张锴, 等 . 管道阀门共振腔气动噪声特性及规律研究[J]. 噪声与振动控制, 2018, 38(S1): 218-221.
Bai C A , Chen T N , Zhang K , et al . Study on aerodynamic noise characteristics and regulations of resonance cavities in pipeline valves [J]. Noise and Vibration Control, 2018, 38(S1): 218-221.
19 肖鸿飞, 向阳, 周鹏, 等 . 空调通风系统管道气动噪声分析[J]. 船海工程, 2018, 47(4): 26-30.
Xiao H F , Xiang Y , Zhou P , et al . Analysis of aerodynamic noise of air conditioning ventilation system pipeline [J]. Ship & Ocean Engineering, 2018, 47(4): 26-30.
20 吕景伟, 季振林 . 变截面管道内流噪声预报与实验测量[J]. 噪声与振动控制, 2011, 31(1): 166-169.
Lü J W , Ji Z L . Numerical prediction and experimental measurement of flow noise in pipes with variable cross-sectional area [J]. Noise and Vibration Control, 2011, 31(1): 166-169.
21 杨文文, 于志成, 李灿, 等 . 基于管道内气流噪声模拟分析与控制实践[C]//全国噪声与振动控制工程学术会议. 2015.
Yang W W , Yu Z C , Li C ,et al . Simulation analysis and control practice based on airflow noise in pipelines [C]// National Conference on Noise and Vibration Control Engineering. 2015.
22 Gao R , Fang Z , Li A G , et al . A novel low-resistance tee of ventilation and air conditioning duct based on energy dissipation control [J]. Applied Thermal Engineering, 2017: 1359431117360337.
23 Gao R , Zheng H C , Li A G , et al . A novel low-resistance duct tee emulating a river course [J]. Building and Environment, 2018, 144: 295-304.
24 Lighthill M J . On sound generated aerodynamically (Ⅰ): General theory[J]. Pro. Roy. London Soc., 1952, 211(1107): 546-587.
25 Curle N . The influence of solid boundaries upon aerodynamic sound [J]. Proceedings of the Royal Society A, 1955, 231(1187): 505-514.
26 詹福良, 徐俊伟 . Virtual. Lab Acoustics声学仿真计算从入门到精通[M]. 西安: 西北工业大学出版社, 2013: 212.
Zhan F L , Xu J W . Virtual. Lab Acoustics Acoustics Simulation Calculations from Entry to Proficiency [M]. Xi an: Northwestern Polytechnical University Press, 2013.
27 Waddington D C , Oldham D J . The prediction of airflow-generated noise in mechanical ventilation systems [J]. Indoor and Built Environment, 2000, 9(2): 111-117.
28 Poweel A . Theory of vortex sound [J]. Acoust. Soc. Am., 1964, 36: 177-195.
29 杨杰, 覃国周, 刘万里 . 存在气流时消声器传声损失的数值计算[J]. 车辆与动力技术, 2015, (1): 42-46.
Yang J , Qin G Z , Liu W L . Numerical calculation of transmission loss of muffler with airflow [J]. Vehicle & Power Technology, 2015, (1): 42-46.
30 赵荣义, 范存养 . 空气调节[M]. 北京: 中国建筑工业出版社, 2005: 172.
Zhao R Y , Fan C Y . Air Conditioning [M]. Beijing: China Building Industry Press, 2005: 172.
[1] 黎义斌, 宋亚娟, 歹晓晖, 李正贵. 不同推进式桨叶对搅拌反应器内气液两相混合特性的影响[J]. 化工学报, 2020, 71(S1): 227-235.
[2] 吴兴辉, 杨震, 陈颖, 段远源. 基于离散相模型的相变微胶囊流体传热特性数值模拟[J]. 化工学报, 2020, 71(4): 1491-1501.
[3] 亢银虎, 张弋, 张朋远, 卢啸风. 二甲醚球形扩散火焰的振荡熄火动力学机理研究[J]. 化工学报, 2020, 71(4): 1469-1481.
[4] 车健, 江锦波, 李纪云, 彭旭东, 马艺, 王玉明. 节流孔出气模式对静压干气密封稳态性能影响[J]. 化工学报, 2020, 71(4): 1734-1743.
[5] 杨锋苓, 张翠勋, 苏腾龙. 柔性Rushton搅拌桨的功耗与流场特性研究[J]. 化工学报, 2020, 71(2): 614-625.
[6] 胡贵华, 叶贞成, 杜文莉. 助燃空气对乙烯裂解炉NOx排放的影响[J]. 化工学报, 2020, 71(2): 698-707.
[7] 王修纲, 吴裕凡, 郭潞阳, 路庆华, 叶晓峰, 曹育才. 聚合釜传热性能的实验研究及数值模拟[J]. 化工学报, 2020, 71(2): 584-593.
[8] 魏琳, 廖梓豪, 蒋方明. PEMFC冷却剂循环条件下冷启动数值模拟[J]. 化工学报, 2019, 70(S2): 146-154.
[9] 应景涛, 李涛. 费托合成蛋壳型催化剂活性组分厚度的模拟计算[J]. 化工学报, 2019, 70(9): 3404-3411.
[10] 张静, 王巍, 宋姝宁, 龚斌, 李雅侠, 王学平, 吴剑华. 入口结构对三维凹壁面切向射流作用下离散颗粒行为的影响[J]. 化工学报, 2019, 70(8): 3021-3032.
[11] 刘斌, 尤占平, 邓佳佳. 一维二氧化碳管道全孔破裂模型[J]. 化工学报, 2019, 70(6): 2174-2181.
[12] 佟颖, Ahmad Nouman, 鲁波娜, 王维. 基于EMMS介尺度模型的双分散鼓泡流化床的模拟[J]. 化工学报, 2019, 70(5): 1682-1692.
[13] 林俊杰, 罗坤, 王帅, 胡陈枢, 樊建人. coarse-grained CFD-DEM方法在不同流态流化床中的模拟验证[J]. 化工学报, 2019, 70(5): 1702-1712.
[14] 张爽, 赵蕾, 高林, 刘华. 并联双U形桩基埋管换热器热-力学特征的数值仿真研究[J]. 化工学报, 2019, 70(5): 1750-1760.
[15] 苏武, 石孝刚, 吴迎亚, 高金森, 蓝兴英. 乙炔加氢制乙烯浆态床反应器的CFD模拟[J]. 化工学报, 2019, 70(5): 1858-1867.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .