化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 120-128.doi: 10.11949/0438-1157.20191143

• 流体力学与传递现象 • 上一篇    下一篇

新型微通道平板热管蓄冰性能

刘子初(),全贞花(),赵耀华,靖赫然,姚孟良,刘新   

  1. 北京工业大学绿色建筑环境与节能技术北京市重点实验室,北京 100124
  • 收稿日期:2019-10-09 修回日期:2019-11-06 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 全贞花 E-mail:13248216635@163.com;quanzh@126.com
  • 作者简介:刘子初(1996—),男,硕士研究生,13248216635@163.com
  • 基金资助:
    国家自然科学基金项目(51778010)

Characteristics of ice storage based on new type of flat micro heat pipe arrays

Zichu LIU(),Zhenhua QUAN(),Yaohua ZHAO,Heran JING,Mengliang YAO,Xin LIU   

  1. Beijing Key Laboratory of Green Building Environment and Energy Saving Technology, Beijing University of Technology, Beijing 100124, China
  • Received:2019-10-09 Revised:2019-11-06 Online:2020-04-25 Published:2020-05-22
  • Contact: Zhenhua QUAN E-mail:13248216635@163.com;quanzh@126.com

摘要:

将微通道平板热管应用于蓄冰技术,设计了一种新型热管蓄冰装置,介绍了该装置的结构和工作原理,搭建了热管蓄冰实验台。对微通道平板热管作为蓄冰装置核心传热元件的适用性进行了实验验证,并对采用R141b和丙酮两种不同沸点工质热管的蓄冰装置在蓄冰过程中的温度分布、蓄冷功率、蓄冷量和蓄冷能量密度等特性进行了对比分析。实验结果表明,微通道平板热管蓄冰装置具有良好的蓄冷性能,相同时间内,R141b和丙酮热管的平均蓄冷功率分别为0.14 kW和0.187 kW,单位质量蓄冷量分别为139.22 kJ·kg-1和184.33 kJ·kg-1;丙酮比R141b热管具有更好的均温性能和传热能力,蓄冰性能更好;丙酮和R141b热管结构蓄冰装置的蓄冷能量密度分别为22.54 J·K-1?kg-2和17.61 J·K-1?kg-2,性能优于圆形热管蓄冰装置。

关键词: 微通道平板热管, 蓄冰, 传热, 蓄冷量, 蓄冷能量密度

Abstract:

This study experimentally investigated a new type of ice storage device (ISD) based on flat micro heat pipe arrays (FMHPAs). The structure and working principle of device were explained in details, and test rig was built. The applicability of FMHPAs as the core heat transfer element was experimentally verified, the characteristics of temperature distribution, cold storage power, cold storage capacity and cold storage density of ISD based on FMHPAs with different boiling temperature working fluids (R141b and acetone) are compared and analyzed. The results showed that ISD based on FMHPAs presented well performance. In the same time, the average cold storage power of FMHPAs with R141b and acetone was 0.14 kW and 0.187 kW, respectively, and the cold storage capacity per unit mass was 139.22 kJ·kg-1 and 184.33 kJ·kg-1, respectively. The cold storage density of ISD based on FMHPAs with R141b and acetone was 22.54 J·K-1?kg-2 and 17.61 J·K-1?kg-2, their performance better than ISD based on circular heat pipe.

Key words: flat micro heat pipe arrays, ice storage, heat transfer, cold storage capacity, cold storage density

中图分类号: 

  • TK 02
1 Lee A H W, Jones J W. Modeling of an ice-on-coil thermal energy storage system [J]. Energy Conversion and Management, 1995, 37(10): 1493-1507.
2 Soltan B K, Ardehali M M. Numerical simulation of water solidification phenomenon for ice-on-coil thermal energy storage application [J]. Energy Conversion and Management, 2003, 44: 85-92.
3 Arcuri B, Spataru C, Barrett M. Evaluation of ice thermal energy storage (ITES) for commercial buildings in cities in Brazil [J]. Sustainable Cities and Society, 2017, 29: 178-192.
4 Zheng Z J, Xu Y, Li M J. Eccentricity optimization of a horizontal shell-and-tube latent-heat thermal energy storage unit based on melting and melting-solidifying performance [J]. Applied Energy, 2018, 220: 447-454.
5 Beghi A, Cecchinato L, Rampazzo M, et al. Energy efficient control of HVAC systems with ice cold thermal energy storage [J]. Journal of Process Control, 2014, 6(24): 773-781.
6 Sanaye S, Hekmatian M. Ice thermal energy storage (ITES) for air-conditioning application in full and partial load operating modes [J]. International Journal of Refrigeration, 2016, 66: 181-197.
7 Lohrasbi S, Miry S Z, Gorji-Bandpy M, et al. Performance enhancement of finned heat pipe assisted latent heat thermal energy storage system in the presence of nano-enhanced H2O as phase change material [J]. International Journal of Hydrogen Energy, 2017, 10(42): 6526-6546.
8 Darzi A A R, Jourabian M, Farhadi Ma. Melting and solidification of PCM enhanced by radial conductive fins and nanoparticles in cylindrical annulus [J]. Energy Conversion and Management, 2016, 118: 253-263.
9 Elbahjaoui R, Qarnia H E. Performance evaluation of a solar thermal energy storage system using nanoparticle-enhanced phase change material [J]. International Journal of Hydrogen Energy, 2019, 3(44): 2013-2028.
10 Nóbreg C R E S, Ismail K A R, Lino F A M. Enhancement of ice formation around vertical finned tubes for cold storage applications [J]. International Journal of Refrigeration, 2019, 99: 251-263.
11 Jannesari H, Abdollahi N. Experimental and numerical study of thin ring and annular fin effects on improving the ice formation in ice-on-coil thermal storage systems [J]. Applied Energy, 2017, 189: 369-384.
12 Rathod M K, Banerjee J. Thermal performance enhancement of shell and tube latent heat storage unit using longitudinal fins [J]. Applied Thermal Engineering, 2015, 75: 1084-1092.
13 Bai Q S, Guo Z X, Cui X, et al. Experimental investigation on the solidification rate of water in open-cell metal foam with copper fins [J]. Energy Procedia, 2018, 152: 210-214.
14 Martinelli M, Bentivoglio F, Caron-Soupart A, et al. Experimental study of a phase change thermal energy storage with copper foam [J]. Applied Thermal Engineering, 2016, 101: 247-261.
15 Sait H H. Experimental study of water solidification phenomenon for ice-on-coil thermal energy storage application utilizing falling film [J]. Applied Thermal Engineering, 2019, 146: 135-145.
16 Sait H H. Heat transfer analysis and effects of feeding tubes arrangement, falling film behavior and backsplash on ice formation around horizontal tubes bundles [J]. Energy Conversion and Management, 2013, 73: 317-328.
17 Abhishek A, Kumar B, Kim M H, et al. Comparison of the performance of ice-on-coil LTES tanks with horizontal and vertical tubes [J]. Energy and Buildings, 2019, 183: 45-53.
18 Shen G, Wang X L, Chan A. Experimental investigation of heat transfer characteristics in a vertical multi-tube latent heat thermal energy storage system [J]. Energy Procedia, 2019, 160: 332-339.
19 Sodhi G S, Vigneshwaran K, Jaiswal A K, et al. Assessment of heat transfer characteristics of a latent heat thermal energy storage system: multi tube design [J]. Energy Procedia, 2019, 158: 4677-4683.
20 胡进喜, 陶玉灵. 热管式冰蓄冷空调的运行特性及分析[J]. 热管技术与应用, 2004, (3): 11-13.
Hu J X, Tao Y L. Operation characteristics and analysis of ice storage based on heat pipe [J]. Technology and Application of Heat Pipe, 2004, (3): 11-13.
21 宋庆武, 王世清, 张岩, 等. 热管管外结冰过程研究[J]. 保鲜与加工, 2007, (2): 20-23.
Song Q W, Wang S Q, Zhang Y, et al. Study on the process of ice formation outside heat pipe [J]. Storage and Process, 2007, (2): 20-23.
22 王世清, 宋庆武, 张岩, 等. 基于热管的自然冷源制冰技术方案的初步试验[J]. 农业工程学报, 2008, 24(11): 23-25.
Wang S Q, Song Q W, Zhang Y, et al. Experimental study on natural cold ice storage based on heat pipe [J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(11): 23-25.
23 王世清, 张岩, 姜文利, 等. 热管技术在自然冷源蓄冷中的应用[J]. 农业工程学报, 2010, 26(4): 312-316.
Wang S Q, Zhang Y, Jiang W L, et al. Application of natural cold storage based on heat pipe [J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(4): 312-316.
24 周向阳, 潘阳, 熊国华. 单根热管蓄冰理论研究[C]//中国建筑学会建筑热能动力分会第十六届学术交流大会论文集. 2009.Zhou X Y, Pan Y, Xiong G H. Study on ice storage theory based on single heat pipe [C]// Proceedings of the 16th Academic Exchange Conference of the Architectural Thermal Energy Branch of the Chinese Architectural Society. 2009.
25 周向阳, 潘阳. 热管冰蓄冷结构设计[J]. 制冷技术, 2011, 39(2): 69-72.
Zhou X Y, Pan Y. Design of ice storage structure based on heat pipe [J]. Refrigeration Technology, 2011, 39(2): 69-72.
26 钟春, 潘阳. 热管蓄冰过程的数值模拟研究[J] , 江西能源, 2009, (2): 38-40.
Zhong C, Pan Y. Numerical simulation of ice storage based on heat pipe [J]. Jiangxi Energy, 2009, (2): 38-40.
27 刘仍通. 热管冰蓄冷实验研究与数值计算[D]. 南昌: 华东交通大学, 2011.
Liu R T. Experimental study and numerical calculation of ice storage based on heat pipe [D]. Nanchang: East China Jiaotong University, 2011.
28 刘金光, 熊旭波, 王世清, 等. 低温热管中无氟制冷剂HCR-22蓄冷效果[J]. 农业工程学报, 2016, 32(19): 268-273.
Liu J G, Xiong X B, Wang S Q, et al. Cooling effect of fluorine free refrigerant HCR-22 used in heat pipe [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(19): 268-273.
29 Xu X F, Zhang X L, Munyalo J M. Key technologies and research progress on enhanced characteristics of cold thermal energy storage [J]. Journal of Molecular Liquids. 2019, 278: 428-437.
30 赵耀华, 王宏燕, 刁彦华, 等. 平板微热管阵列及其传热特性[J]. 化工学报, 2011, 62(2): 336-343.
Zhao Y H, Wang H Y, Diao Y H, et al. Heat transfer characteristics of flat micro-heat pipe arrays [J]. CIESC Journal, 2011, 62(2): 336-343.
31 康亚盟. 平板微热管阵列相变蓄热装置强化换热特性研究[D]. 北京: 北京工业大学, 2017.
Kang Y M. Experimental investigation on heat transfer performance of a new type of flat micro-heat pipe array latent thermal energy storage device [D]. Beijing: Beijing University of Technology, 2017.
[1] 李阳, 常守金, 胡海涛, 孙浩然, 赖展程, 刘善敏. 飞行器机载精密仪器温控系统性能的实验研究[J]. 化工学报, 2020, 71(S1): 77-82.
[2] 詹宏波, 郑文远, 文涛, 张大林. 微尺度通道内R134a的冷凝传热实验研究[J]. 化工学报, 2020, 71(S1): 83-89.
[3] 刘秀峰, 张诗, 周志杰, 郑浩, 王成泽, 时红远, 李梦杰. 换热器结构优化与换热性能评价指标研究[J]. 化工学报, 2020, 71(S1): 98-105.
[4] 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157.
[5] 孙苏芮, 王德昌, 张金翠, 刘振, 李延辉. 膜蓄能器放能过程的传热传质特性分析[J]. 化工学报, 2020, 71(S1): 158-165.
[6] 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171.
[7] 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186.
[8] 陈玮玮, 方贤德, 鹿世化, 林福建, 张烨. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211.
[9] 王瑞琪, 高赞军, 杨华, 胡文超, 詹宏波. 机载冷源参数对蒸发循环系统性能的影响[J]. 化工学报, 2020, 71(S1): 212-219.
[10] 常健佩, 黄翔, 安苗苗, 李朝阳. 蒸发冷却冷水机组的原理、性能与适用性分析[J]. 化工学报, 2020, 71(S1): 236-244.
[11] 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37.
[12] 张晨宇, 王宁, 徐洪涛, 张剑飞, 曹萌. 基于相变材料的太阳能PV/T系统性能[J]. 化工学报, 2020, 71(S1): 361-367.
[13] 郭良, 李恒, 庞丽萍, 毛晓东, 赵竞全, 杨晓东. 高速运载器发电/制冷联合系统稳态性能[J]. 化工学报, 2020, 71(S1): 391-396.
[14] 郭栋才, 盛强, 杨鹏, 徐捷, 王泽, 杨波, 曹娇坤. 基于热电效应的高效环控系统[J]. 化工学报, 2020, 71(S1): 404-410.
[15] 马德胜, 庞丽萍, 毛晓东, 董素君. 机载综合环控系统的热管理[J]. 化工学报, 2020, 71(S1): 436-440.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .