化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 51-56.doi: 10.11949/0438-1157.20191137

• • 上一篇    下一篇

将CO2、R170和R41应用于跨临界空气源热泵热水器系统的性能对比研究

  

  1. 安徽工业大学建筑工程学院,安徽 马鞍山 243002
  • 收稿日期:2019-10-08 修回日期:2019-11-15 出版日期:2020-04-25 发布日期:2020-05-22
  • 作者简介:王栋(1981—),男,博士,讲师,wangdong224545@163.com
  • 基金资助:
    国家自然科学基金项目(51608001);安徽省高校自然科学研究重点项目(KJ2017A055)

Comparison of air-source heat pump water heater performance with transcritical cycle using CO2, R170 and R41 as refrigerant

Dong WANG(),Yaru LIU,Zhuo CHEN,Zunli KOU,Yuehong LU   

  1. School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243002,Anhui, China
  • Received:2019-10-08 Revised:2019-11-15 Online:2020-04-25 Published:2020-05-22
  • Contact: Dong WANG E-mail:wangdong224545@163.com

摘要:

基于一套空气源热泵热水器系统,首先建立了相关的热力学参数计算模型,之后将CO2、R170和 R41这3种制冷剂分别应用于该系统,并对跨临界循环的热力学性能及效率进行计算,最后对各性能参数进行详细对比。研究结果表明:在同样的工况下对比COPheat效率,R41系统分别比CO2系统提升了31.77%和23.34%,而R170系统则提升了4.9%和3.6%;R41和R170在提升系统制热量方面也具有明显的优势;R41和R170的系统最优运行高压也比CO2系统分别降低了35%和43%。因此,除了CO2外,R41和R170也是另外2种很有潜力的应用于跨临界循环的制冷剂。

关键词: 空气源热泵热水器, 跨临界循环, CO2, R41, R170, 性能,

Abstract:

On the basis of an air-source heat pump water heater (ASHPWH) system, a thermodynamic model used to calculate system performance is developed. Then, the performances and exergy efficiencies of a transcritical cycle with CO2, R170 and R41 are investigated and compared. The results indicate that the COPheat and exergy efficiencies of R41 (R170) system are about 31.77% (4.9%) and 23.34% (3.6%) higher than that of CO2 system under the same condition. R41 and R170 also have obvious advantages in increasing the heating capacity. Moreover, the optimum high pressure of systemwith R41 (R170) is more than 35% (43%) lower compared to that with CO2. So, besides CO2, R41 and R170 are also promising refrigerants for an ASHPWH system.

Key words: ASHPWH, transcritical cycle, CO2, R41, R170, performance, enthalpy, exergy

中图分类号: 

  • TB 657.9
1 Dai B M, Liu S C, Zhu K, et al. Thermodynamic performance evaluation of transcritical carbon dioxide refrigeration cycle integrated with thermoelectric subcooler and expander [J]. Energy, 2017, 122: 787-800.
2 武卫东, 贾松燊, 吴俊, 等. 以降压为目的的CO2混合工质制冷系统研究进展[J]. 化工进展, 2017, 36(6): 1969-1976.
Wu W D, Jia S S, Wu J, et al. Research progress on refrigeration systems using CO2 mixture refrigerant to reduce its cycle pressure [J]. Chemical Industry and Engineering Progress, 2017, 36(6): 1969-1976.
3 朱洁, 吕静, 李昶, 等. CO2微通道蒸发器换热特性实验研究[J]. 建筑节能, 2019, 47(5): 111-115.
Zhu J, Lyu J, Li C, et al. Experimental study on heat transfer characteristics of CO2 microchannel evaporator [J]. Building Energy Efficiency, 2019, 47(5): 111-115.
4 邹思凯, 戴源德, 何国庚. R290及其混合制冷剂在水平管内相变换热的研究进展[J]. 化工进展, 2016, 35(11): 3413-3420.
Zou S K, Dai Y D, He G G. Studies on phase change heat transfer of R290 and its refrigerant mixtures in horizontal tube [J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3413-3420.
5 Park K J, Lee Y, Jung D. Performance of R170/R1270 mixture under air-conditioning and heat pumping conditions [J]. J. Mech. Sci. Technol., 2010, 24: 879-885.
6 Ju F J, Fan X W, Chen Y P, et al. Experiment and simulation study on performances of heat pump water heater using blend of R744/R290 [J]. Energ. Buildings, 2018, 169: 148-156.
7 Wang D D, Zhang Z Y, Yu B B, et al. Experimental research on charge determination and accumulator behavior in trans-critical CO2 mobile air-conditioning system [J]. Energy, 2019, 183: 106-115.
8 杨梦, 张华, 秦延斌, 等. 混合制冷剂R134a/R1234yf (R513A)与R134a热力学性能对比及实验[J]. 化工进展, 2019, 38(3): 1182-1189.
Yang M, Zhang H, Qin Y B, et al. Thermodynamic performance comparison and experimental study of mixed refrigerant R134a/R1234yf(R513A) and R134a [J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1182-1189.
9 Zhuang X R, Gong M Q, Zou X, et al. Experimental investigation on flow condensation heat transfer and pressure drop of R170 in a horizontal tube [J]. Int. J. Refrig., 2016, 66: 105-120.
10 Massuchetto L H P, Nascimento R B C, Carvalho S M R, et al. Thermodynamic performance evaluation of a cascade refrigeration system with mixed refrigerants: R744/R1270, R744/R717 and R744/RE170 [J]. International Journal of Refrigeration, 2019, 106: 201-212.
11 Tammaro M, Montagud C, Corberán J M, et al. Seasonal performance assessment of sanitary hot water production systems using propane and CO2 heat pumps [J]. Int. J. Refrig., 2017, 74: 224-239.
12 Sobieraj M, Rosiński M. Experimental study of the heat transfer in R744/R600a mixtures below the R744 triple point temperature [J]. International Journal of Refrigeration, 2019, 103: 243-252.
13 Fernandez N, Hwang Y, Radermacher R. Comparison of CO2 heat pump water heater performance with baseline cycle and two high COP cycles [J]. Int. J. Refrig., 2010, 33: 635-644.
14 Ghoubali R, Byrne P, Bazantay F. Refrigerant charge optimisation for propane heat pump water heaters [J]. Int. J. Refrig., 2017, 76: 230-244.
15 Abas N, Kalair A R, Khan N, et al. Natural and synthetic refrigerants, global warming: a review [J]. Renewable and Sustainable Energy Reviews, 2018, 90: 557-569.
16 梦照峰, 张华, 秦延斌, 等. R1234yf/R134a混合物在汽车空调中替代R134a的实验研究[J]. 化工学报, 2018, 69(6): 2396-2403.
Meng Z F, Zhang H, Qin Y B, et al. Experimental study on R1234yf/R134a mixture as alternative to R134a in automobile air conditioner [J]. CIESC Journal, 2018, 69(6): 2396-2403.
17 Zhuang X, Gong M, Chen G, et al. Two-phase flow pattern map for R170 in a horizontal smooth tube [J]. Int. J. Heat Mass Tran., 2016, 102: 1141-1149.
18 Ibrahim O, Fardoun F, Younes R, et al. Optimal management proposal for hybrid water heating system [J]. Energy and Buildings, 2014, 75: 342-357.
19 Peng J W, Li H, Zhang C L. Performance comparison of air-source heat pump water heater with different expansion devices [J]. Appl. Therm. Eng., 2016, 99: 1190-1200.
20 李慧, 曹祥, 张春路. 二氧化碳热泵技术的发展及应用案例分析[J]. 化工进展, 2016, 35(S2) : 421-426.
Li H, Cao X, Zhang C L. Developments and application analysis of carbon dioxide heat pump [J]. Chemical Industry and Engineering Progress, 2016, 35(S2) : 421-426.
21 Guo J J, Wu J Y, Wang R Z, et al. Experimental research and operation optimization of an air-source heat pump water heater [J]. Appl. Energ., 2011, 88: 4128-4138.
22 陈子丹, 罗会龙, 刘锦春, 等. 寒冷地区CO2空气源热泵供暖运行性能分析[J]. 化工学报, 2018, 69(9): 4030-4036.
Chen Z D, Luo H L, Liu J C, et al. Analysis of heating performance of CO2 air-source heat pump in cold region [J]. CIESC Journal, 2018, 69(9): 4030-4036.
23 Hu B, Li Y, Wang R Z, et al. Real-time minimization of power consumption for air-source transcritical CO2 heat pump water heater system [J]. Int. J. Refrig., 2018, 85: 395-408.
24 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 家用和类似用途热泵热水器: GB/T23137—2008 [S]. 北京: 中国标准出版社, 2008.
General Administration of Quality Supervision, Inspection and Quarantine of the People s Republic of China, Standardization Administration of the People s Republic of China. Heat pump water heater for household and similar application: GB/T23137—2008[S]. Beijing: Standards Press of China, 2008.
25 Sarkar J, Bhattacharyya S, Gopal M R. Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications [J]. Int. J. Refrig., 2004, 27: 830-838.
26 Wang D, Liu Y R, Kou Z L, et al. Energy and exergy analysis of an air-source heat pump water heater system using CO2/R170 mixture as an azeotropy refrigerant for sustainable development [J]. Int. J. Refrig., 2019, 106: 628-638.
[1] 杨自力, 郜彩云, 龚斐然, 余旭芸, 余赟, 蔡天逊. 运行压力对超声雾化溶液除湿系统性能的影响[J]. 化工学报, 2020, 71(S1): 129-135.
[2] 罗坤, 毛晓东, 庞丽萍. 新型直升机热泵空调系统驾驶舱热控性能[J]. 化工学报, 2020, 71(S1): 187-193.
[3] 常健佩, 黄翔, 安苗苗, 李朝阳. 蒸发冷却冷水机组的原理、性能与适用性分析[J]. 化工学报, 2020, 71(S1): 236-244.
[4] 赵惠忠, 雷敏, 黄天厚, 刘涛, 张敏. 复合吸附剂MWCNT/MgCl2的水蒸气吸附性能[J]. 化工学报, 2020, 71(S1): 272-281.
[5] 马坤茹, 李雪峰, 李思琦, 高翠娟. 新型太阳能/空气能直膨式热泵与空气源热泵供热性能对比[J]. 化工学报, 2020, 71(S1): 375-381.
[6] 韩建年, 王刚, 杨梅, 刘美佳, 高成地, 高金森. 费托蜡催化裂化反应生产清洁汽油的热力学分析[J]. 化工学报, 2020, 71(S1): 38-45.
[7] 王栋, 刘雅如, 陈卓, 寇遵丽, 鲁月红. 充注量对小型CO2水源热泵热水器性能的影响及其最佳值的确定[J]. 化工学报, 2020, 71(S1): 397-403.
[8] 吴延鹏, 赵薇, 陈凤君. 不同相对湿度下亲疏水纳米纤维膜空气过滤性能实验研究[J]. 化工学报, 2020, 71(S1): 471-478.
[9] 明勇, 彭艳楠, 苏文, 魏国龙, 王强, 周乃君, 赵力. 闭式热源下混合工质与纯工质的ORC性能比较[J]. 化工学报, 2020, 71(4): 1570-1579.
[10] 蒙真真, 武志红, 刘新伟, 王耀, 郑海康, 王宇斌. 竹节状碳化硅晶须吸波性能研究[J]. 化工学报, 2020, 71(4): 1889-1897.
[11] 郭华超, 杨波, 黄国家, 徐青永, 李爽, 伍振凌. 聚偏氟乙烯/石墨烯复合材料的制备及性能研究[J]. 化工学报, 2020, 71(4): 1881-1888.
[12] 杨永安, 李瑞申, 李坤, 孙天慧. 采用R410A单一工质的复叠式空气源热泵[J]. 化工学报, 2020, 71(4): 1812-1821.
[13] 许于, 陈怡沁, 周静红, 隋志军, 周兴贵. LiFePO4锂离子电池的数值模拟:正极材料颗粒粒径的影响[J]. 化工学报, 2020, 71(2): 821-830.
[14] 李扬, 张扬, 陈宣龙, 龚勋. 钙基吸附剂循环吸附性能对增强式生物质气化制氢的影响研究[J]. 化工学报, 2020, 71(2): 777-787.
[15] 吴杰, 李嘉辉, 于燕梅, 于养信. 第Ⅲ族元素磷化物热力学性质理论研究[J]. 化工学报, 2020, 71(1): 192-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .