化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 187-193.doi: 10.11949/0438-1157.20191136

• 流体力学与传递现象 • 上一篇    下一篇

新型直升机热泵空调系统驾驶舱热控性能

罗坤1(),毛晓东2,庞丽萍1,3()   

  1. 1.北京航空航天大学航空科学与工程学院,北京 100191
    2.沈阳航空航天大学航空发动机学院,辽宁 沈阳 110136
    3.沈阳航空航天大学安全工程学院,辽宁 沈阳 110136
  • 收稿日期:2019-10-08 修回日期:2019-11-06 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 庞丽萍 E-mail:luokun@buaa.edu.cn;pangliping@buaa.edu.cn
  • 作者简介:罗坤(1990—),男,博士研究生,luokun@buaa.edu.cn
  • 基金资助:
    辽宁省“兴辽英才计划”基金项目(XLYC1802092)

Cockpit thermal control performance of new helicopter heat pump air conditioning system

Kun LUO1(),Xiaodong MAO2,Liping PANG1,3()   

  1. 1.School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
    2.School of Aero-Engine, Shenyang Aerospace University, Shenyang 110136, Liaoning, China
    3.School of Safety, Shenyang Aerospace University, Shenyang 110136, Liaoning, China
  • Received:2019-10-08 Revised:2019-11-06 Online:2020-04-25 Published:2020-05-22
  • Contact: Liping PANG E-mail:luokun@buaa.edu.cn;pangliping@buaa.edu.cn

摘要:

直升机飞行过程往往需要面临低温环境,为了保障人员和设备的正常工作,需要对驾驶舱进行加热,但发动机引气产生代偿损失。因此,提出了一种新型直升机热泵空调加热系统,该系统以经过滑油-冲压空气换热器加热的冲压空气为热源,采用热泵循环的方式对座舱进行供热,对滑油废热进行了回收利用。在所提出的热泵空调系统方案的基础上,建立了该系统仿真模型,对地面低温环境条件直升机全飞行任务阶段的驾驶舱温度瞬态响应以及热泵系统工作性能进行了动态仿真研究。结果表明,该新型热泵空调系统能够满足直升机低温环境下的供热需求,且在工作温度范围内其制热能力和制热效率均明显更高,系统低温工作性能得到提高,直升机的低温环境适应能力得到显著提升。

关键词: 直升机, 回收, 热泵空调, 加热, 瞬态响应, 系统工作性能, 动态仿真

Abstract:

The helicopter often faces low temperature environment in the flight process, in order to ensure the safety of the pilots and equipment, the cockpit needs to be heated. The traditional environmental control mode of engine bleeding air will cause engine compensation, the application of heat pump air conditioning in helicopter environmental control system can reduce compensation while meet the demand of helicopter cooling and heating, the heat pump air conditioning system takes lube oil waste heat as heat source, and heat the cockpit with heat pump cycle. However, the operating temperature range greatly limits its application in helicopters. Therefore, a new type of helicopter heat pump air conditioning system with waste heat recovery is proposed, and the transient response of cockpit temperature and system performance of the system are studied by establishing the dynamic simulation model of the system. The results show that the new heat pump air conditioning system can meet the heat demand of helicopter in low temperature environment, and its heating capacity and heating efficiency are higher in the working temperature range. The low temperature performance of the system is improved, and the adaptability of helicopter in low temperature environment is significantly improved.

Key words: helicopter, recovery, heat pump air conditioning, heating, transient response, system performance, dynamic simulation

中图分类号: 

  • V 275

图1

系统结构1—风扇;2—冲压空气换向阀;3—滑油/冲压空气换热器;4—工质/冲压空气换热器;5—膨胀阀;6—工质/舱内空气换热器;7—压缩机;8—电磁四通换向阀"

图2

飞行任务剖面"

图3

驾驶舱温度控制曲线"

图4

飞行任务a在不同ATS条件下的系统性能"

图5

飞行任务b在不同ATS条件下的系统性能"

1 彭孝天, 王苏明, 王晨臣, 等. 直升机环境控制系统应用现状分析[J]. 海军航空工程学院学报, 2018, 33(2): 225-230.
Peng X T, Wang S M, Wang C C, et al. Analysis of application status of helicopter environmental control system [J]. Journal of Naval Aeronautical and Astronautical University, 2018, 33(2): 225-230.
2 张洋, 张文涛. 基于直升机环控系统的环境模拟系统研制[J]. 航天制造技术, 2018, (3): 35-37.
Zhang Y, Zhang W T. Development of environmental simulation system based on helicopter environmental control system [J]. Aerospace Manufacturing Technology, 2018, (3): 35-37.
3 Mavris D N, Bandte O, Delaurentis D A. Robust design simulation: a probabilistic approach to multidisciplinary design [J]. Journal of Aircraft, 1999, 36(1): 298-307
4 崔利, 薛浩. 直升机环控系统对比与展望[J]. 装备环境工程, 2010, (3): 62-65.
Cui L, Xue H. Comparison and prospect of helicopter environmental control system [J]. Equipment Environmental Engineering, 2010, (3): 62-65.
5 黄文捷. 直升机环控系统性能分析与研究[J]. 直升机技术, 2002, (1): 22-24.
Huang W J. Analysis and research on helicopter environmental control system performance [J]. Helicopter Technique, 2002, (1): 22-24.
6 陈婉莹, 李克清, 王顶忠, 等. 飞机环控系统供气温度、流量和湿度对座舱热负荷的影响[J]. 航空学报, 1999, 20(S1): S39-S41.
Chen W Y, Li K Q, Wang D Z, et al. Effect of supply air temperature, flow and humidity of cabin environmental control system on heat stress of cabin of fighter aircraft [J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(S1): S39-S41.
7 唐有才, 王占勇, 孙金立. 现代军用飞机环境控制系统探讨[J]. 航空科学技术, 2002, (4): 35-37.
Tang Y C, Wang Z Y, Sun J L. Exploration of environment control system for modern military aircraft [J]. Aeronautical Science and Technology, 2002, (4): 35-37.
8 宋俊虓, 林贵平. 飞机环控系统引气分系统动态性能分析[J]. 北京航空航天大学学报, 1997, (5): 560-564.
Song J X, Lin G P. Transient performance of air-bleeding part of environmental control system [J]. Journal of Beijing University of Aeronautics and Astronautics, 1997, (5): 560-564.
9 党晓民, 李亦白. 多电飞机环控系统设计技术研究[C]//大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集. 2007.
Dang X M, Li Y B. Research on design technology of environmental control system for multi-electric aircraft [C]// High-level Forum on Key Technologies of Large Aircraft and 2007 Annual Academic Conference of China Aviation Society. 2007.
10 孟繁鑫, 王瑞琪, 高赞军, 等. 多电飞机电动环境控制系统关键技术研究[J]. 航空科学技术, 2018, (2): 5-12.
Meng F X, Wang R Q, Gao Z J, et al. Research of key technology for the more electrical aircraft electric environmental control system [J]. Aeronautical Science and Technology, 2018, (2): 5-12.
11 陈圣斌, 周晓光, 黄建萍, 等. 人-机-环境系统工程技术与飞机/直升机驾驶舱设计[C]//大型飞机关键技术高层论坛暨中国航空学会学术年会. 2007.
Chen S B, Zhou X G, Huang J P,et al. Man-machine-environment system engineering and aircraft/helicopter cockpit design [C]// High-level Forum on Key Technologies of Large Aircraft and 2007 Annual Academic Conference of China Aviation Society. 2007.
12 Cai J Y, Li Z H, Ji J, et al. Performance analysis of novel air source hybrid solar assisted heat pump [J]. Renewable Energy, 2019, 139(8): 1133-1145.
13 Sun J B, Hyun S P, Sung J Y, et al. Study on the optimal heat supply control algorithm for district heating distribution network in response to outdoor air temperature [J]. Energy, 2015, 86: 247-256.
14 张洪生, 张学军. 直升机旋翼功率传递系数确定方法[J]. 海军航空工程学报, 2009, 21(2): 126-128.
Zhang H S, Zhang X J. Identification of helicopter rotor power transfer coefficient [J]. Journal of Naval Aeronautical and Astronautical University, 2009, 21(2): 126-128.
15 刘寅, 周光辉, 李安桂, 等. 太阳能辅助空气源热泵空调低温特性研究[J]. 低温与超导, 2009, 37(10): 73-75.
Liu Y, Zhou G H, Li A G, et al. Performance research of solar assistant air source heat pump in low temperature condition [J]. Cryogenics & Superconductivity, 2009, 37(10): 73-75.
16 刘忠民. 热泵空调器低温制热的探讨[J]. 制冷与空调, 2001, 1(1): 45-48.
Liu Z M. Discussion on low temperature heating of heat pump air conditioning [J]. Refrigeration and Air-conditioning, 2001, 1(1): 45-48.
17 王荣英, 周顺武, 闫巨盛, 等. 近30年青藏高原上空大气温度变化特征[J]. 高原山地气相研究, 2011, 31(1): 1-5.
Wang R Y, Zhou S W, Yan J S, et al. Analysis of temporal and spatial characteristics about upper-air temperature over Tibetan Plateau during last 30 years [J]. Plateau and Mountain Meteorology Research, 2011, 31(1): 1-5.
18 Donateo T, Carla A, Avanzini G. Fuel consumption of rotorcrafts and potentiality for hybrid electric power system [J]. Energy Conversion and Management, 2018, 164: 429-442.
19 Pang L P, Zhao M, Luo K, et al. Dynamic temperature prediction of electronic equipment under high altitude long endurance conditions [J]. Chinese Journal of Aeronautics, 2018, (31): 1189-1197.
20 Alyanak E J, Allison D L. Fuel thermal management system consideration in conceptual design sizing [C]// AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2016.
21 Osprio J D, Rivera-Alvarez A, Girurugwiro P, et al. Integration of transparent insulation materials into solar collector devices [J]. Solar Energy, 2017, 147: 8-21.
22 Xu W, Ren D, Ye Q, et al. Simulations and experiments of laminar heat transfer for therminol heat transfer fluids in a rifled tube [J]. Applied Thermal Engineering, 2016, 102: 861-872
23 Nunes T K, Vargas J V C, Ordonez J C, et al. Modeling, simulation and optimization of a vapor compression refrigeration system dynamic and steady state response [J]. Applied Energy, 2015, 158: 540-555.
24 Gorgy E, Eckels S. Convective boiling of R-134a on enhanced-tube bundles [J]. International Journal of Refrigeration, 2016, 68: 145-160.
25 Park I, Lee H, Mudawar I. Determination of flow regimes and heat transfer coefficient for condensation in horizontal tubes [J]. International Journal of Heat and Mass transfer, 2015, 80: 698-716.
26 Lee H, Mudawar I, Hasan M M. Flow condensation in horizontal tubes [J]. International Journal of Heat & Mass Transfer, 2013, 66(11): 31-45.
27 Aounallah Y, Kenning D B R. Nucleate boiling and the Chen correlation for flow boiling heat transfer [J]. Experimental Heat Transfer, 1987, 1(2): 87-92.
28 Gorgy E, Eckels S. Convective boiling of R-134a on enhanced-tube bundles [J]. International Journal of Refrigeration, 2016, 68: 145-160.
29 Zajaczkowski B, Halon T, Krolicki Z. Experimental verification of heat transfer coefficient for nucleate boiling at sub-atmospheric pressure and small heat fluxes [J]. Heat and Mass Transfer, 2016, 52(2): 205-215.
[1] 郭晓雨, 田喆, 牛纪德, 祝捷. 基于分时电价的区域管网系统储能应用研究[J]. 化工学报, 2020, 71(S1): 293-299.
[2] 齐玢, 段希希, 阿嵘, 江泓升. 载人航天器环热控一体化仿真分析[J]. 化工学报, 2020, 71(S1): 300-306.
[3] 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321.
[4] 吴文翔, 韩小渠, 周志杰, 王宇, 种道彤. 循环转轮空调系统变工况除湿特性[J]. 化工学报, 2020, 71(S1): 355-360.
[5] 涂爱民, 刘世杰, 莫逊, 朱冬生, 尹应德. 螺旋扭曲管用于燃气轮机进气温度调节换热器的可行性研究[J]. 化工学报, 2020, 71(4): 1562-1569.
[6] 陈蓓秋, 林春香, 刘以凡, 吕源财, 刘明华. 离子液体在纳米纤维素制备中的应用进展[J]. 化工学报, 2020, 71(3): 903-913.
[7] 党晓娥, 淮敏超. CuSO4对氰化提金贫液中SCN-的沉淀效果以及对共存离子浓度的影响[J]. 化工学报, 2020, 71(3): 1310-1316.
[8] 马金凤, 曾玺, 王芳, 康国俊, 武荣成, 许光文. 煤红外快速热解过程中床层对二次反应的影响[J]. 化工学报, 2020, 71(2): 736-745.
[9] 罗潇, 郭航, 叶芳, 马重芳. 基于真空镀膜技术的薄膜热传感器实验[J]. 化工学报, 2019, 70(S2): 123-129.
[10] 万忠民,全文祥,阎瀚章,陈曦,黄泰明,张焱,张敬,孔祥忠. 无人机用燃料电池系统性能分析[J]. 化工学报, 2019, 70(S2): 329-335.
[11] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[12] 杨浩, 闫二艳. 基于束能推进的微波加热效率仿真[J]. 化工学报, 2019, 70(S1): 93-98.
[13] 侯中兰, 魏新利, 马新灵, 孟祥睿. 循环水流量对ORC余热发电系统性能影响的试验分析[J]. 化工学报, 2019, 70(9): 3283-3290.
[14] 曹语, 王乐, 季超, 黄延召, 薛志磊, 陆剑鸣, 漆虹. 陶瓷膜冷凝器用于烟气脱白烟过程的中试研究[J]. 化工学报, 2019, 70(6): 2192-2201.
[15] 陈曦, 林毅, 邵帅. 倾角及加热功率对乙烷脉动热管传热性能的影响[J]. 化工学报, 2019, 70(4): 1383-1389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .