化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 448-453.doi: 10.11949/0438-1157.20191135

• 材料化学工程与纳米技术 • 上一篇    下一篇

添加碳纳米颗粒对磷氮双掺杂石墨烯电化学特性的影响

韩超灵(),陈振乾()   

  1. 东南大学能源与环境学院,江苏 南京 210096
  • 收稿日期:2019-10-08 修回日期:2019-11-11 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 陈振乾 E-mail:478713295@qq.com;zqchen@seu.edu.cn
  • 作者简介:韩超灵(1991—),男,博士研究生,478713295@qq.com
  • 基金资助:
    国家自然科学基金项目(51676037);东南大学优秀博士学位论文培育基金项目(YBPY1901)

Effect of active carbon nanoparticles on electrochemical properties of phosphorus-nitrogen double-doped graphene

Chaoling HAN(),Zhenqian CHEN()   

  1. School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, China
  • Received:2019-10-08 Revised:2019-11-11 Online:2020-04-25 Published:2020-05-22
  • Contact: Zhenqian CHEN E-mail:478713295@qq.com;zqchen@seu.edu.cn

摘要:

燃料电池作为新型清洁能源技术具有高效的能源转化效率和环境友好等优点,在诸如交通运输以及航空航天等领域有着重要而广泛的应用。在影响燃料电池性能的众多因素中,电极的高效催化与稳定性对于整个燃料电池系统的性能至关重要。近年来,石墨烯材料由于优异的电学与力学性质为低铂高效催化研究提供了理论上的可行性。本研究以六氯环三磷腈(HCCP)为原料设计了一步热还原合成法实验制备了磷氮双掺杂石墨烯,并通过添加碳纳米颗粒增加了石墨烯层间间距,改善了石墨烯层间的团聚效应,提高了氧化还原(ORR)性能。研究结果表明,当AC添加含量与GO的质量比为10%时,其比表面积与电化学性能提升最为明显,极限电流密度达到-6.89 mA·cm-2并且氧化活性能保持80%以上。因此,使用添加碳纳米颗粒对磷氮双掺杂石墨烯作为燃料电池非金属催化剂材料的进一步探索具有巨大的潜力。

关键词: 燃料电池, 掺杂石墨烯, 碳纳米颗粒, 电化学, 催化剂

Abstract:

Fuel cell as a new clean energy technology has the characteristics of high energy conversion efficiency and environmental protection. It has been widely used in transportation, aerospace and other fields. Among the factors affecting the performance of fuel cell, the efficient catalysis and stability of electrodes are most importantly for the performance of the fuel cell system. In recent years, graphene based materials have provided theoretical feasibility for the study of low platinum (Pt) and high efficiency catalysis due to their excellent electrical and mechanical properties. In this study, phosphorus-nitrogen double-doped graphene was prepared with a one-step thermal reduction synthesis by using hexachlorocyclotriphosphazonitrile (HCCP) as the raw material. With adding the active carbon nanoparticles, the spacing between graphene layers was increased, and the agglomeration between graphene layers was also decrease, which result in a significantly promotion of the oxidation reduction reactions (ORR) performance. The results show that when the mass ratio of AC to GO is 10%, the specific surface area and electrochemical performance are improved most obviously with the limiting current density is -6.89 mA·cm-2 and the oxidation activity can be maintained above 80%. Therefore, the material we prepared for phosphorus-nitrogen double-doped graphene has great potential as the non-metallic catalyst material for fuel cells.

Key words: fuel cell, doped graphene, active carbon nanoparticles, electrochemistry, catalyst

中图分类号: 

  • O 646.541

图1

P,N-G的制备过程"

图2

未添加AC(a)、添加10% AC(b)条件下P,N-G的微观形貌和元素映射图[(c)、(d)]"

图3

AC (0)@P,N-G的XRD谱图(a)和AC (0)@P,N-G的拉曼光谱图(b)"

图4

P,N-G的N2吸脱附曲线(a)和孔径分布(b)"

图5

不同碳纳米颗粒含量(AC=0, 5%, 10%, 30%和50%)下的磷氮掺杂石墨烯CV曲线(a); 1600 r·min-1转速下不同碳纳米颗粒含量(AC=0, 5%, 10%, 30%和50%)下的磷氮掺杂石墨烯LSV曲线(b); 10%碳纳米颗粒含量下的磷氮掺杂石墨烯不同扫速LSV曲线(c); 10%碳纳米颗粒含量下的磷氮掺杂石墨烯K-L曲线(d); 由(d)计算得到的电子转移数(e); 10%碳纳米颗粒含量下的磷氮掺杂石墨烯循环稳定性(f)"

25 Chai G L, Qiu K P, Qiao M, et al. Active sites engineering leads to exceptional ORR and OER bifunctionality in P, N co-doped graphene frameworks [J]. Energy Environ. Sci., 2017, 10(5): 1186-1195.
26 Yang J B, Li Y L, Mi H W, et al. Enhanced electrocatalytic performance of Fe-TiO2/N-doped graphene cathodes for rechargeable Li-O2 batteries [J]. J. Solid. State. Electr., 2018, 22: 909-917.
27 Tang J J, Chen G H, Yang J, et al. Silica-assistant synthesis of three-dimensional graphene architecture and its application as anode material for lithium ion batteries [J]. Nano Energy, 2014, 8: 62-70.
28 Yu C, Fang H Q, Liu Z Q, et al. Chemically grafting graphene oxide to B, N co-doped graphene via ionic liquid and their superior performance for triiodide reduction [J]. Nano Energy, 2016, 25: 184-192.
29 Li Y F, Liu Y Z, Liang Y, et al. Preparation of nitrogen-doped graphene/activated carbon composite papers to enhance energy storage in supercapacitors [J]. Appl. Phys. A., 2017, 123: 566.
30 Park S, Shao Y Y, Wan H Y, et al. Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells [J]. Electrochem. Commun., 2011, 13: 258-261.
1 Shao M H, Chang Q W, Dodelet J P, et al. Recent advances in electrocatalysts for oxygen reduction reaction [J]. Chem. Rev., 2016, 116: 3594-3657.
2 Guo S J, Zhang S, Sun S H. Tuning nanoparticle catalysis for the oxygen reduction reaction [J]. Angew. Chem. Int. Ed., 2013, 52: 8526-8544.
3 Yang L, Zeng X F, Wang W C, et al. Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells [J]. Adv. Funct. Mater., 2018, 28: 1704537.
4 Morales-Guio C G, Hu X L. Amorphous molybdenum sulfides as hydrogen evolution catalysts [J]. Acc. Chem. Res., 2014, 47: 2671-2681.
5 Zhou X J, Qiao J L, Yan L, et al. A review of graphene-based nanostructural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions [J]. Adv. Energy. Mater., 2014, 4: 1301523.
6 Nie Y, Li L, Wei Z D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction [J]. Chem. Soc. Rev., 2015, 44: 2168-2201.
7 Zheng Y, Jia Y, Jaroniec M, et al. Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction [J]. Small, 2012, 8: 3550-3566.
8 Geim A K, Novoselov K S. The rise of graphene [J]. Nat. Mater., 2007, 6: 183-191.
9 贺新福, 龙雪颖, 吴红菊, 等. 氮掺杂石墨烯/多孔碳复合材料的制备及其氧还原催化性能[J]. 化工学报, 2019, 70(6): 2308-2315.
He X F, Long X Y, Wu H J, et al. Synthesis of N-doped graphene/porous carbon composite and its electrocatalytic performance on oxygen reduction reaction. [J]. CIESC Journal, 2019, 70(6): 2308-2315.
10 Zuo Z C, Jiang Z Q, Manthiram A. Porous B-doped graphene inspired by fried-ice for supercapacitors and metal-free catalysts [J]. J. Mater. Chem. A, 2013, 43(1): 13476-13483.
11 Noh S H, Kwon C, Hwang J, et al. Self-assembled nitrogen-doped fullerenes and their catalysis for fuel cell and rechargeable metal-air battery applications [J]. Nanoscale, 2017, 22(9): 7373-7379.
12 Li X N, Huang X, Xi S B, et al. Single cobalt atoms anchored on porous N‑doped graphene with dual reaction sites for efficient fenton-like catalysis [J]. J. Am. Chem. Soc., 2018, 140: 12469-12475.
13 Wang Z G, Li P J, Chen Y F, et al. Phosphorus-doped reduced graphene oxide as an electrocatalyst counter electrode in dye-sensitized solar cells [J]. J. Power Source, 2014, 263: 246-251.
14 Ma Z L, Dou S, Shen A L, et al. Sulfur-doped graphene derived from cycled lithium-sulfur batteries as a metal-free electrocatalyst for the oxygen reduction reaction [J]. Angew. Chem. Int. Ed., 2015, 54: 1888-1892.
15 Fazio G, Ferrighi L, Valentin C D. Boron-doped graphene as active electrocatalyst for oxygen reduction reaction at a fuel-cell cathode [J]. J. Catal., 2014, 318: 203-210.
16 Sheng Z H, Shao L, Chen J J, et al. Catalyst-free synthesis of nitrogen doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis [J]. ACS Nano, 2011, 5(6): 4350-4358.
17 Qu L T, Liu Y, Baek J B, et al. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells [J]. ACS Nano, 2010, 4(3): 1321-1326.
18 Wang X R, Li X L, Zhang L, et al. N-doping of graphene through electrothermal reactions with ammonia [J]. Science, 2009, 324(5928): 768-771.
19 Han C L, Chen Z Q. Adsorption properties of O2 on the unequal amounts of binary co-doped graphene by B/N and P/N: a density functional theory study [J]. Appl. Surf. Sci., 2019, 471: 445-454.
20 Choi C H, Chung M W, Kwon H C, et al. B, N- and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media [J]. J. Mater. Chem. A, 2013, 11(1): 3694-3699.
21 Li R, Wei Z D, Gou X L. Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution [J]. ACS Catal., 2015, 5(7): 4133-4142.
22 Wang Z, Tan Y T, Yang Y L, et al. Pomelo peels-derived porous activated carbon microsheets dual-doped with nitrogen and phosphorus for high performance electrochemical capacitors [J]. J. Power Source, 2018, 378: 499-510.
23 Zhang J T, Qu L T, Shi G Q, et al. N, P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions [J]. Angew. Chem. Int. Ed., 2016, 55: 2230 -2234.
24 Zhang Z P, Sun J T, Dou M L, et al. Nitrogen and phosphorus codoped mesoporous carbon derived from polypyrrole as superior metal-free electrocatalyst toward the oxygen reduction reaction [J]. ACS Appl. Mater. Interfaces, 2017, 9(19): 16236-16242.
[1] 方书起, 石崇, 李攀, 白净, 常春. Fe-Zn共改性ZSM-5催化作用下生物质快速热解特性研究[J]. 化工学报, 2020, 71(4): 1637-1645.
[2] 黄珊, 陆勇泽, 朱光灿, 孔赟. 耦合生物阴极SND的MLMB -MFC的构建与运行[J]. 化工学报, 2020, 71(4): 1772-1780.
[3] 焦昭杰, 陈立功, 柳云骐, 张贤明, 龚海峰, 高旭. CuCe氧化物催化剂的制备及CWPO降解双酚A废水研究[J]. 化工学报, 2020, 71(4): 1646-1656.
[4] 王捷, 李圆, 赵海雷. 纳米颗粒组装三维Co3O4微米花材料制备及储锂性能研究[J]. 化工学报, 2020, 71(4): 1844-1850.
[5] 刘帅, 李学雷, 王烁天, 李旭贺, 王彦娟, 苑兴洲, 张健, 封瑞江. CeO2改性WO3/g-C3N4光催化氧化脱硫性能[J]. 化工学报, 2020, 71(4): 1618-1626.
[6] 赵少飞, 刘鹏, 李婉萍, 曾小红, 钟远红, 余林, 曾华强. 一步电沉积法制备硫化镍/泡沫镍材料及其赝电容性能研究[J]. 化工学报, 2020, 71(4): 1836-1843.
[7] 李敬, 杜刚, 殷娟娟. ZnxCo1-xCO3碳酸盐负极材料的制备及其电化学性能研究[J]. 化工学报, 2020, 71(3): 1390-1397.
[8] 朱连燕, 王玉明, 周幸福. 响应曲面法优化电催化降解染料废水工艺的研究[J]. 化工学报, 2020, 71(3): 1335-1342.
[9] 王柯晴, 徐劼, 沈芷璇, 陈家斌, 吴玮. LaCoO3钙钛矿活化过一硫酸盐降解萘普生[J]. 化工学报, 2020, 71(3): 1326-1334.
[10] 刘晓刚, 魏波, 史芸菲, 孙巾茹, 田雨, 赵玉, 迟姚玲, 王虹, 李翠清, 宋永吉. La1-xLixMnO3钙钛矿催化剂同时消除NO和碳烟催化性能[J]. 化工学报, 2020, 71(3): 1053-1059.
[11] 杨殿才, 潘宇涵, 黄群星, 蒋旭光, 王飞, 严建华. 废轮胎热解炭低温催化焦油重整制备富氢气体的研究[J]. 化工学报, 2020, 71(2): 642-650.
[12] 侯莲霞, 任鑫, 周静红, 周兴贵. 杂质对Ru/AC催化秸秆水解液加氢反应的抑制作用[J]. 化工学报, 2020, 71(2): 633-641.
[13] 吴辰亮, 李小青, 张超, 张荷丰, 严新焕. Fe-Ce/SiO2固体碱催化剂用于制备碳酸二甲酯[J]. 化工学报, 2020, 71(1): 297-305.
[14] 曲云鹏, 张丙兴, 石金彪, 谭秀娘, 韩布兴, 杨冠英, 张建玲. 钛基金属-有机框架材料的改性及其催化性能研究[J]. 化工学报, 2020, 71(1): 283-289.
[15] 陈钰, 牟天成. 低共熔溶剂在电池和电催化中的应用[J]. 化工学报, 2020, 71(1): 106-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .