化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 129-135.doi: 10.11949/0438-1157.20191134

• 流体力学与传递现象 • 上一篇    下一篇

运行压力对超声雾化溶液除湿系统性能的影响

杨自力(),郜彩云,龚斐然,余旭芸,余赟,蔡天逊   

  1. 东华大学环境科学与工程学院,上海 201620
  • 收稿日期:2019-10-08 修回日期:2019-11-06 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 杨自力 E-mail:ziliy@dhu.edu.cn
  • 作者简介:杨自力(1989—),男,博士,讲师,ziliy@dhu.edu.cn.
  • 基金资助:
    中央高校基本科研业务费专项资金项目(2232018D3-36);中国博士后基金项目(2018M630385);上海市青年科技英才扬帆计划项目(19YF1401800);上海市大学生创新创业训练项目(sh201910255193)

Working pressures on performance of ultrasonic atomization liquid desiccant dehumidification system

Zili YANG(),Caiyun GAO,Feiran GONG,Xuyun YU,Yun YU,Tianxun CAI   

  1. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
  • Received:2019-10-08 Revised:2019-11-06 Online:2020-04-25 Published:2020-05-22
  • Contact: Zili YANG E-mail:ziliy@dhu.edu.cn

摘要:

基于溶液除湿热质传递过程中所遵循的质量平衡、能量平衡模型,以超声雾化溶液除湿系统(UADS)为例,探讨了在不同空气处理温度、湿度下,系统运行压力对除湿性能的影响。结果表明:随着运行压力的升高,UADS系统的除湿性能显著改善。特别是在所处理空气入口温度较高时,提升系统运行压力对除湿效率的提高作用更加显著。同时,当所处理空气的含湿量较大时,提高运行压力对系统除湿速率的增幅明显,而对除湿效率的改善作用减弱。此外,当除湿系统在较高压力下运行时,其除湿效率受所处理空气入口温湿度变化而产生的波动减小,系统性能稳定性显著改善。所得结果可对溶液除湿系统的高效、稳定运行提供积极参考。

关键词: 溶液, 吸收, 运行压力, 除湿性能, 稳定性

Abstract:

The effect of working pressures on the performance of the liquid desiccant dehumidification system was studied in this work. The ultrasonic atomization liquid desiccant dehumidification system (i.e., UADS) was taken as the prototype while a model based on the mass balance, the energy balance of the atomized solution dehumidification process was employed to simulate the performance. It was found that the dehumidification performance of the UADS system increases significantly with the rise of working pressure. In particular, when the air inlet temperature climbs, the facilitating effect of raising working pressure on the dehumidification efficiency becomes more significant. Meanwhile, a more significant promoting effect from the working pressure on the moisture removal rate was also presented with the rise of the inlet humidity ratio of the airstream, while its effect on improving the dehumidification effectiveness was weakening. In addition, the dehumidification performance tends to be more stable with the rise of the working pressure and less affected by the inlet conditions of the airstream. This study may help in clarifying and promoting the performance of the liquid desiccant dehumidification system under different working pressures.

Key words: solution, absorption, working pressure, dehumidification performance, stability

中图分类号: 

  • TU 834.9

图1

雾化溶液除湿热质传递"

表1

氯化锂水溶液比容量方程的参数[21]"

ABCDEFGH
1.43980-1.24317-0.120700.128250.6293458.5225-105.634347.7948

图2

超声雾化液体除湿实验装置[16]"

图3

预测模型的实验验证"

表2

基础工况"

空气流量/

(kg·s-1)

空气温度/

空气含湿量/

(g·kg-1)

溶液流量/

(kg·s-1)

溶液温度/

溶液浓度/

%

雾化液滴半径/

μm

1.032200.5253825

图4

不同空气入口温度下系统运行压力与除湿性能的关系"

图5

不同空气入口含湿量下系统运行压力与除湿性能的关系"

图6

不同运行压力下空气温度、湿度与除湿效率的关系"

图7

不同运行压力下空气温度、湿度与除湿速率的关系"

1 江亿, 李震, 陈晓阳, 等. 溶液除湿空调系列文章 溶液式空调及其应用[J]. 暖通空调, 2004, 34(11): 88-97.
Jiang Y, Li Z, Chen X Y, et al. Liquid desiccant air-conditioning system and its applications [J]. Journal of HV & AC, 2004, 34(11): 88-97.
2 刘晓华, 张涛, 江亿. 采用吸湿剂处理湿空气的流程优化分析[J]. 暖通空调, 2011, 41(3): 77-87.
Liu X Y, Zhang T, Jiang Y. Optimization of heat and mass transfer processes between desiccant and moist air [J]. Journal of HV & AC, 2011, 41(3): 77-87.
3 殷勇高. 溶液除湿系统除湿/再生过程及其热质耦合机理研究[D]. 南京: 东南大学, 2009.
Yin Y G. Study on the coupled characteristic of heat and mass transfer between air and desiccant in liquid desiccant dehumidification and regeneration [D]. Nanjing: Southeast University, 2009.
4 Luo Y, Shao S, Xu H, et al. Experimental and theoretical research of a fin-tube type internally-cooled liquid desiccant dehumidifier [J]. Applied Energy, 2014, 133(15): 127-134.
5 张凡, 殷勇高. 一种低位热驱动除湿冷却空调系统的热性能分析[J]. 化工学报, 2016, 67: 275-283.
Zhang F, Yin Y G. Thermal performance analysis of liquid desiccant evaporative cooling air-conditioning system driven by low-grade heat [J]. CIESC Journal, 2016, 67: 275-283.
6 Liu X, Qu K, Jiang Y. Empirical correlations to predict the performance of the dehumidifier using liquid desiccant in heat and mass transfer [J]. Renewable Energy, 2006, 31(10): 1627-1639.
7 Ren C Q, Jiang Y, Zhang Y P. Simplified analysis of coupled heat and mass transfer processes in packed bed liquid desiccant-air contact system [J]. Solar Energy, 2006, 80(1): 121-131.
8 Longo G A, Gasparella A. Experimental analysis on desiccant regeneration in a packed column with structured and random packing [J]. Solar Energy, 2009, 83(4): 511-521.
9 Luo Y, Wang M, Yang H, et al. Experimental study of the film thickness in the dehumidifier of a liquid desiccant air conditioning system [J]. Energy, 2015, 84(1): 239-246.
10 Rahmad A S, Elsayed M M, Al-Najem N M. A numerical investigation for the heat and mass transfer between parallel flow of air and desiccant falling film in a fin-tube arrangement [J]. HVAC&R Res., 2000, 6(4): 307-323.
11 Ali A, Vafai K, Khaled A R A. Comparative study between parallel and counter flow configurations between air and falling film desiccant in the presence of nanoparticle suspensions [J]. Int. J. Energ. Res., 2003, 27(8): 725-745.
12 Abdel-Salam A H, Ge G, Simonson C J. Performance analysis of a membrane liquid desiccant air-conditioning system [J]. Energy and Buildings, 2013, 62: 559-569.
13 Ge G, Ghadiri M D, Abdel-Salam A H, et al. Comparison of experimental data and a model for heat and mass transfer performance of a liquid-to-air membrane energy exchanger (LAMEE) when used for air dehumidification and salt solution regeneration [J]. International Journal of Heat and Mass Transfer, 2014, 68: 119-131.
14 Huang S M, Yang M, Hu B, et al. Performance analysis of an internally-cooled plate membrane liquid desiccant dehumidifier (IMLDD): an analytical solution approach [J]. International Journal of Heat and Mass Transfer, 2018, 119: 577-585.
15 Yang Z, Tao R, Ni H, et al. Performance study of the internally-cooled ultrasonic atomization liquid desiccant dehumidification system [J]. Energy, 2019, 175(15): 745-757.
16 Yang Z, Lin B, Zhang K, et al. Experimental study on mass transfer performances of the ultrasonic atomization liquid desiccant dehumidification system [J]. Energy and Buildings, 2015, 93: 126-136.
17 Yang Z, Zhang K, Yang M, et al. Improvement of the ultrasonic atomization liquid desiccant dehumidification system [J]. Energy and Buildings, 2014, 85: 145-154.
18 Yon H R, Cai W, Wang Y, et al. Dynamic model for a novel liquid desiccant regeneration system operating in vacuum condition [J]. Energy and Buildings, 2018, 167(15): 69-78.
19 Yon H R, Cai W, Wang Y, et al. Performance investigation on a novel liquid desiccant regeneration system operating in vacuum condition [J]. Applied Energy, 2018, 211: 249-258.
20 Yao Y, Liu S. Ultrasonic Technology for Desiccant Regeneration [M]. Shanghai: Shanghai Jiao Tong University Press, 2014: 177-234.
21 Conde M R. Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design [J]. International Journal of Thermal Science, 2004, 43(4): 367-382.
22 Gao W, Liu J, Cheng Y, et al. Experimental investigation on the heat and mass transfer between air and liquid desiccant in a cross-flow dehumidifier [J]. Renewable Energy, 2012, 37(1): 117-123.
23 Bassuoni M M. An experimental study of structured packing dehumidifier/regenerator operating with liquid desiccant [J]. Energy, 2011, 36(5): 2628-2638.
24 边争, 杨自力, 连之伟. 超声雾化液体除湿空调系统性能实验研究[J]. 上海交通大学学报, 2012, 46(10): 1604-1608.
Bian Z, Yang Z L, Lian Z W. Experimental study of ultrasound atomization dehumidifying system with liquid desiccant [J]. Journal of Shanghai Jiao Tong University, 2012, 46(10): 1604-1608.
25 Liu X, Zhang Y, Qu K, et al. Experimental study on mass transfer performances of cross flow dehumidifier using liquid desiccant [J]. Energy Conversion and Management, 2006, 47(15/16): 2682-2692.
26 Moon C, Bansal P, Jain S. New mass transfer performance data of a cross-flow liquid desiccant dehumidification system [J]. International Journal of Refrigeration, 2009, 32(3): 524-533.
[1] 罗东琴, 孙宁, 李秋红, 隋鹏亮, 姜秋艳, 隋晓飞, 李爱香. 非共价改性纳米颗粒稳定Pickering乳液的制备及可逆调控[J]. 化工学报, 2020, 71(4): 1859-1870.
[2] 徐巾超, 陈勇, 叶辉青, 张杰, 张霁, 罗忠华. 罗沙司他共晶的合成、表征与理化性质研究[J]. 化工学报, 2020, 71(4): 1851-1858.
[3] 姚鑫宇, 程潇, 王晗, 沈洪, 吴慧英, 刘振宇. 铜基正弦波微通道内流动沸腾传热特性试验研究[J]. 化工学报, 2020, 71(4): 1502-1509.
[4] 胡松, 李进龙, 杨卫胜. 环氧丙烷尾气甲醇吸收及纯化工艺[J]. 化工学报, 2020, 71(4): 1657-1665.
[5] 彭冬根, 徐少华. 蒸发冷却条件下管内LiCl和CaCl2溶液降膜除湿性能对比[J]. 化工学报, 2020, 71(4): 1554-1561.
[6] 何德峰, 张永达, 李廉明, 仇翔. 循环流化床燃烧系统无终端约束字典序经济预测控制[J]. 化工学报, 2020, 71(3): 1210-1216.
[7] 刘艳奇, 何路东, 廉培超, 陈鑫智, 梅毅. 黑磷烯稳定性增强研究进展[J]. 化工学报, 2020, 71(3): 936-944.
[8] 倪辉, 杨自力, 钟珂, 陶睿杨, 谷雨倩. 内热型超声雾化溶液再生系统最优内热量的研究[J]. 化工学报, 2020, 71(3): 1035-1044.
[9] 杨生, 邵雪峰, 范利武. 面向中温储热的D-半乳糖醇/肌糖醇二元共晶相变材料热稳定性研究[J]. 化工学报, 2020, 71(2): 864-870.
[10] 吴辰亮, 李小青, 张超, 张荷丰, 严新焕. Fe-Ce/SiO2固体碱催化剂用于制备碳酸二甲酯[J]. 化工学报, 2020, 71(1): 297-305.
[11] 桂成敏, 朱瑞松, 张傑, 雷志刚. 离子液体气体干燥技术的研究进展[J]. 化工学报, 2020, 71(1): 92-105.
[12] 刘佳佳, 付雪, 许映杰. 离子液体吸收分离一氧化碳的研究进展[J]. 化工学报, 2020, 71(1): 138-147.
[13] 邓晓霞, 龚磊, 刘小棒, 邓东顺. 咪唑类三元低共熔溶剂捕集低压SO2的实验研究[J]. 化工学报, 2020, 71(1): 368-375.
[14] 毛建新, 袁子卿, 严红绡, 周仁贤. 添加Sm对Pt /SBA-15催化苯完全氧化反应活性和热稳定性的影响[J]. 化工学报, 2020, 71(1): 306-313.
[15] 闫秋会,孙晓阳,罗杰任,吴志菊. 玻璃棉/SiO2气凝胶复合板的改性研究[J]. 化工学报, 2019, 70(S2): 363-368.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .