化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 23-30.doi: 10.11949/0438-1157.20191131

• 热力学 • 上一篇    下一篇

含空气净化过程的液态空气储能热力学研究

王晨1(),折晓会2,张小松1()   

  1. 1. 东南大学能源与环境学院,江苏 南京 210096
    2. 伯明翰大学储能研究中心,伯明翰 B15 2TT, 英国
  • 收稿日期:2019-10-07 修回日期:2019-11-08 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 张小松 E-mail:wangchen4178@163.com;rachpe@seu.edu.cn
  • 作者简介:王晨(1995—),男,博士研究生,wangchen4178@163.com
  • 基金资助:
    国家自然科学基金项目(51520105009);国家重点研发计划项目(2016YFC0700305)

Thermodynamic study of liquid air energy storage with air purification unit

Chen WANG1(),Xiaohui SHE2,Xiaosong ZHANG1()   

  1. 1. School of Energy & Environment, Southeast University, Nanjing 210096, Jiangsu, China
    2. Birmingham Centre for Energy Storage, University of Birmingham, Birmingham B15 2TT, UK
  • Received:2019-10-07 Revised:2019-11-08 Online:2020-04-25 Published:2020-05-22
  • Contact: Xiaosong ZHANG E-mail:wangchen4178@163.com;rachpe@seu.edu.cn

摘要:

针对现今液态空气储能(LAES)研究中普遍存在忽略空气净化过程能耗而使LAES系统能效被高估的问题,提出了一种含空气净化过程的LAES系统。该系统包含空气液化过程、液态空气释能过程和TSA纯化过程,通过全流程的仿真模拟验证系统可行性,并对其进行热力学分析。结果显示:提高液态空气释能压力、空气透平进口温度和储热油使用比例,可以有效提升系统的热力学性能;储存的压缩热仍有约36%未被完全使用,若将其全部回收利用,全系统效率可达0.623;该含空气纯化过程的LAES系统储电效率为0.471,比基线LAES系统低6.8%。

关键词: 液态空气储能, 吸附, 脱附, 压缩热, 热力学

Abstract:

In the current research on liquid air energy storage (LAES), it is found that the performance of LAES system is generally overestimated without considering the power consumption of air purification. This paper therefore proposes a complete LAES system with air purification unit.The LAES system consists of three parts: charging cycle, discharging cycle and TSA process.The whole system is verified to be feasible by the simulation in the Aspen Plus? version 8.4, and the thermodynamic analysis of this system is carried out. The results show that the thermodynamic performance of the system can be effectively improved by increasing the discharging pressure, the air turbine inlet temperature and the proportion of the thermal oil used in the discharging cycle. About 36% of the stored heat of compression is not fully used, if it is totally recycled, the exergy efficiency of the whole system can reach 0.623. The electricity storage efficiency of the LAES system with air purification unit is 0.471, which is 6.8% lower than that of the baseline LAES system.

Key words: liquid air energy storage, adsorption, desorption, heat of compression, thermodynamics

中图分类号: 

  • TK 02

图1

含空气净化过程的液态空气储能系统流程"

图2

TSA纯化过程吸附和再生步骤流程"

表1

LAES系统各工况点状态参数"

参数 数值
加压压力P c 9×106 Pa
热油初始温度T 17 293 K
丙烷初始温度T 34 214 K
甲醇初始温度T 36 293 K
液态空气温度T 13 78.54 K
液态空气压力P 13 1×105 Pa
释能压力P d 1.2×107 Pa
透平进口温度P 41 458.5 K
透平出口最终压力P 46 1×105 Pa
吸附温度 298 K
吸附压力 5.8×105 Pa
脱附压力 1×105 Pa
热吹温度P 47 443 K
冷吹温度P 47 296 K
压缩机等熵效率 0.89
透平等熵效率 0.9
制冷膨胀机等熵效率 0.8
低温泵效率 0.7

表2

LAES系统各工况点状态参数"

工况点 流量/(kg/s) 温度/K 压力×10-5 /Pa 介质
1 129.74 293.00 1.00 空气
2 200.00 506.79 5.80 空气
3 200.00 309.00 5.80 空气
4 200.00 298.00 5.80 空气
5 199.84 298.00 5.80 空气
6 199.84 446.19 20.85 空气
7 199.84 309.00 20.85 空气
8 199.84 490.20 90.00 空气
9 199.84 309.00 90.00 空气
10 199.84 221.38 90.00 空气
11 199.84 123.80 90.00 空气
12 199.84 78.74 1.00 空气
13 129.74 78.54 1.00 空气
14 70.10 79.24 1.00 空气
15 70.10 216.90 1.00 空气
16 70.10 293.00 1.00 空气
17 380.00 293.00 1.00 储热油
18 129.20 293.00 1.00 储热油
19 129.20 479.90 1.00 储热油
20 125.40 293.00 1.00 储热油
21 125.40 434.47 1.00 储热油
22 125.40 293.00 1.00 储热油
23 125.40 481.61 1.00 储热油
24 380.00 465.85 1.00 储热油
25 243.20 465.85 1.00 储热油
26 86.82 465.85 1.00 储热油
27 86.82 293.87 1.00 储热油
28 79.04 465.85 1.00 储热油
29 79.04 309.63 1.00 储热油
30 77.34 465.85 1.00 储热油
31 77.34 312.04 1.00 储热油
32 243.20 304.86 1.00 储热油
33 120.00 87.20 1.00 丙烷
34 120.00 214.00 1.00 丙烷
35 55.00 215.00 1.00 甲醇
36 55.00 293.00 1.00 甲醇
37 129.74 78.74 1.00 空气
38 129.74 86.11 120.00 空气
39 129.74 206.86 120.00 空气
40 129.74 290.42 120.00 空气
41 129.74 458.50 120.00 空气
42 129.74 304.51 24.33 空气
43 129.74 458.50 24.33 空气
44 129.74 306.77 4.93 空气
45 129.74 458.50 4.93 空气
46 129.74 307.53 1.00 空气

表3

LAES系统模拟结果参数"

参数 数值
压缩机耗功 109243.864 kW
制冷膨胀机输出功率 4311.376 kW
空气液化过程效率 0.814
低温泵耗功 2527.568 kW
空气透平输出功率 59068.701 kW
液态空气释能过程效率 0.873
液体收率 0.65
基线系统储电效率 0.539

图3

空气液化过程和液态空气释能过程的T-s图"

图4

释能压力对LAES系统的影响(P c=9×106 Pa)"

图5

空气透平进口温度对LAES系统的影响(P c=9×106 Pa,P d=1.2×107 Pa)"

图6

R dis对LAES系统的影响(P c=9×105 Pa)"

1 Janet L , Sawin J , Freyr S . Renewables 2018 global status report [EB/OL]. [2018-12-01]. http: //www.ren21.net/gsr-2018/chapters/chapter_01/chapter_01/.
2 Chen H , Cong T N , Yang W , et al . Progress in electrical energy storage system: a critical review [J]. Progress in Natural Science, 2009, 19(3): 291-312.
3 周原冰 . 全球能源互联网及关键技术[EB/OL]. [2019-04-22]. http: //kns.cnki.net/kcms/detail/ 11.1784.N.20190420.143.002.html.
Zhou Y B . Global energy internet and key technologies [EB/OL]. [2019-04-22]. http: //kns.cnki.net/kcms/detail/ 11.1784.N.20190420.1439.002.html.
4 Rodrigues E M G , Godina R , Santos S F , et al . Energy storage systems supporting increased penetration of renewables in islanded systems [J]. Energy, 2014, 75: 265-280.
5 Denholm P , Hand M . Grid flexibility and storage required to achieve very high penetration of variable renewable electricity [J]. Energy Policy, 2011, 39(3): 1817-1830.
6 Li Y , Chen H , Zhang X , et al . Renewable energy carriers: hydrogen or liquid air/nitrogen? [J]. Applied Thermal Engineering, 2010, 30(14/15): 1985-1990.
7 Antonelli M , Desideri U , Giglioli R , et al . Liquid air energy storage: a potential low emissions and efficient storage system [J]. Energy Procedia, 2016, 88: 693-697.
8 Antonelli M , Barsali S , Desideri U , et al . Liquid air energy storage: potential and challenges of hybrid power plants [J]. Applied Energy, 2017, 194: 522-529.
9 Smith E M . Storage of electrical energy using supercritical liquid air [J]. Proceedings of the Institution of Mechanical Engineers, 2006, 191(1): 289-298.
10 Peng H , Shan X , Yang Y , et al . A study on performance of a liquid air energy storage system with packed bed units [J]. Applied Energy, 2018, 211: 126-135.
11 Al-Zareer M , Dincer I , Rosen M A . Analysis and assessment of novel liquid air energy storage system with district heating and cooling capabilities [J]. Energy, 2017, 141: 792-802.
12 Sciacovelli A , Vecchi A , Ding Y . Liquid air energy storage (LAES) with packed bed cold thermal storage — from component to system level performance through dynamic modelling [J]. Applied Energy, 2017, 190: 84-98.
13 She X , Peng X , Nie B , et al . Enhancement of round trip efficiency of liquid air energy storage through effective utilization of heat of compression [J]. Applied Energy, 2017, 206: 1632-1642.
14 Peng X , She X , Cong L , et al . Thermodynamic study on the effect of cold and heat recovery on performance of liquid air energy storage [J]. Applied Energy, 2018, 221: 86-99.
15 Li Y , Jin Y , Chen H , et al . An integrated system for thermal power generation, electrical energy storage and CO2 capture [J]. International Journal of Energy Research, 2011, 35(13): 1158-1167.
16 Aneke M , Wang M . Process analysis of pressurized oxy-coal power cycle for carbon capture application integrated with liquid air power generation and binary cycle engines [J]. Applied Energy, 2015, 154: 556-566.
17 Zhang T , Zhang X , Xue X , et al . Thermodynamic analysis of a hybrid power system combining Kalina cycle with liquid air energy storage [J]. Entropy, 2019, 21(3): 220.
18 Xie Y , Xue X . Thermodynamic analysis on an integrated liquefied air energy storage and electricity generation system [J]. Energies, 2018, 11(10): 2540.
19 Ameel B , joen C T , De K K , et al . Thermodynamic analysis of energy storage with a liquid air Rankine cycle [J]. Applied Thermal Engineering, 2013, 52(1): 130-140.
20 Tafone A , Romagnoli A , Li Y , et al . Techno-economic analysis of a liquid air energy storage (LAES) for cooling application in hot climates [J]. Energy Procedia, 2017, 105: 4450-4457.
21 Zhang T , Chen L , Zhang X , et al . Thermodynamic analysis of a novel hybrid liquid air energy storage system based on the utilization of LNG cold energy [J]. Energy, 2018, 155: 641-650.
22 Serbezov A . Adsorption equilibrium of water vapor on F-200 activated alumina [J]. J. Chem. Eng. Data, 2003, 48: 421-425.
23 Wang L , Liu Z , Li P , et al . Experimental and modeling investigation on post-combustion carbon dioxide capture using zeolite 13X-APG by hybrid VTSA process [J]. Chemical Engineering Journal, 2012, 197: 151-161.
24 Oh H T , Lim S J , Kim J H , et al . Adsorption equilibria of water vapor on an alumina/zeolite 13X composite and silica gel [J]. Journal of Chemical & Engineering Data, 2017, 62(2): 804-811.
25 孔祥明, 杨颖, 沈文龙, 等 . CO2/CH4/N2在沸石13X-APG上的吸附平衡 [J]. 化工学报, 2013, 64(6): 2117-2124.
Kong X M , Yang Y , Shen W L , et al . Adsorption equilibrium of CO2, CH4 and N2 on zeolite 13X-APG [J]. CIESC Journal, 2013, 64(6): 2117-2124.
26 Rege S U , Yang R T , Buzanowski M A . Sorbents for air prepurification in air separation [J]. Chemical Engineering Science, 2000, 55: 4827-4838.
27 Ko D , Kim M , Moona I , et al . Analysis of purge gas temperature in cyclic TSA process [J]. Chemical Engineering Science, 2002, 57: 179-195.
28 Kumar R , Koss V , Perelman N , et al . Thermal swing adsorption process to minimize the thermal pulse during the feed step [J]. Separation Science and Technology, 2000, 35(14): 2279-2297.
29 Tian Q , He G , Wang Z , et al . A novel radial adsorber with parallel layered beds for prepurification of large-scale air separation units [J]. Industrial & Engineering Chemistry Research, 2015, 54(30): 7502-7515.
30 Zhang P , Wang L . Numerical analysis on the performance of the three-bed temperature swing adsorption process for air prepurification [J]. Industrial & Engineering Chemistry Research, 2012, 52(2): 885-898.
31 Xu J F , Peng Q , Fu J L . Exergy analysis on thermodynamic system of power plant [J]. Energy Engineering, 2001, 5: 21-24.
32 朱永强, 尹忠东 . 基于能量利用效率和耗能比的节能效果评估体系[J]. 电工电能新技术, 2007, 26: 33-36.
Zhu Y Q , Yin Z D . New evaluation system for energy savings based on efficiency and loss ratio [J]. Advanced Technology of Electrical Engineering and Energy, 2007, 26: 33-36.
[1] 裴后举, 蒋彦龙, 施红, 崔永龙, 陈常栋, 钱晓辉. 基于M-L湍流模型的浮空器强迫对流换热[J]. 化工学报, 2020, 71(S1): 136-141.
[2] 赵惠忠, 雷敏, 黄天厚, 刘涛, 张敏. 复合吸附剂MWCNT/MgCl2的水蒸气吸附性能[J]. 化工学报, 2020, 71(S1): 272-281.
[3] 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321.
[4] 孟繁鑫, 孙佳宁, 周月, 高赞军, 程定斌. 飞机环控系统空气循环机仿真建模及试验校核[J]. 化工学报, 2020, 71(S1): 328-334.
[5] 吴文翔, 韩小渠, 周志杰, 王宇, 种道彤. 循环转轮空调系统变工况除湿特性[J]. 化工学报, 2020, 71(S1): 355-360.
[6] 刘博文, 邓帅, 李双俊, 赵力, 杜振宇, 陈丽锦. 变温吸附碳捕集系统能效性能实验研究[J]. 化工学报, 2020, 71(S1): 382-390.
[7] 郭良, 李恒, 庞丽萍, 毛晓东, 赵竞全, 杨晓东. 高速运载器发电/制冷联合系统稳态性能[J]. 化工学报, 2020, 71(S1): 391-396.
[8] 郭栋才, 盛强, 杨鹏, 徐捷, 王泽, 杨波, 曹娇坤. 基于热电效应的高效环控系统[J]. 化工学报, 2020, 71(S1): 404-410.
[9] 杨晓东, 庞丽萍, 阿嵘, 金亮. 高速飞行器燃油热管理系统飞行热航时[J]. 化工学报, 2020, 71(S1): 425-429.
[10] 张洁, 庞丽萍, 曲洪权, 王天博. 基于随机配置网络的机载电子吊舱多工况热模型[J]. 化工学报, 2020, 71(S1): 441-447.
[11] 杨东升, 阿嵘, 张建斌, 王大鹏, 张斌, 徐迎丽, 秦俊杰, 刘淑芬. 航天器舱内环境下非金属增材制造热效应分析[J]. 化工学报, 2020, 71(S1): 486-493.
[12] 武君媛, 霍伟智, 李志强, 曾嘉恒, 江燕斌. 电纺zein-SLS纤维膜的制备及其离子吸附性能研究[J]. 化工学报, 2020, 71(S1): 252-260.
[13] 李攀, 孔慧, 宋卓栋, 张作毅, 王云芳. 甲醇-甲醛-聚甲氧基二甲醚三元体系汽液平衡[J]. 化工学报, 2020, 71(S1): 7-14.
[14] 亓士超, 朱蓉蓉, 刘昕, 薛丁铭, 刘晓勤, 孙林兵. 乙二胺不同掺杂模式下多孔有机聚合物对CO2的吸附[J]. 化工学报, 2020, 71(4): 1666-1675.
[15] 臧立静, 黄克谨, 苑杨, 钱行, 张亮, 王韶峰, 陈海胜. 轻组分绝对占优的蒸汽再压缩隔离壁蒸馏塔的最优拓扑结构[J]. 化工学报, 2020, 71(4): 1696-1711.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹相生, 付昆明, 钱栋, 朱兆亮, 孟雪征. 甲醇为碳源时C/N对反硝化过程中亚硝酸盐积累的影响 [J]. 化工学报, 2010, 61(11): 2939 -2943 .
[2] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[3] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[4] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[5] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[6] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[7] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[8] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[9] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[10] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .