化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 391-396.doi: 10.11949/0438-1157.20191130

• 能源和环境工程 • 上一篇    下一篇

高速运载器发电/制冷联合系统稳态性能

郭良1(),李恒1,庞丽萍1(),毛晓东2,赵竞全1,杨晓东3   

  1. 1.北京航空航天大学航空科学与工程学院,北京 100191
    2.沈阳航空航天大学航空发动机学院,辽宁 沈阳 110136
    3.北京空天技术研究所,北京 100074
  • 收稿日期:2019-10-07 修回日期:2020-01-02 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 庞丽萍 E-mail:729202688@qq.com;pangliping@buaa.edu.cn
  • 作者简介:郭良(1995—),男,学士,729202688@qq.com
  • 基金资助:
    国家重点研发计划基金项目(2017YFB1201201);辽宁省“兴辽英才计划”基金项目(XLYC1802092)

Steady state performance of power generation/refrigeration combined system for new high speed vehicle

Liang GUO1(),Heng LI1,Liping PANG1(),Xiaodong MAO2,Jingquan ZHAO1,Xiaodong YANG3   

  1. 1.School of Aviation Science and Engineering, Beihang University, Beijing 100191, China
    2.School of Aero-engine, Shenyang Aerospace University, Shenyang 110136, Liaoning, China
    3.Beijing Aerospace Technology Institute, Beijing 100074, China
  • Received:2019-10-07 Revised:2020-01-02 Online:2020-04-25 Published:2020-05-22
  • Contact: Liping PANG E-mail:729202688@qq.com;pangliping@buaa.edu.cn

摘要:

目前高速运载器的研究已成为国内外航空科学领域的热点问题,速度的提高导致传统的空气热沉已经不能单独作为环境控制系统的制冷工质,同时电子设备的剧增带来更多的热负荷和更大的电量消耗,因此发电量和制冷量成为制约高速运载器性能提高的两大难题。从最基本的空气压缩制冷循环出发,结合现有的燃油作为热沉的环境控制系统,提出一种新型的高速运载器发电制冷技术方案,并对其稳态性能做出详细的分析研究。该方案可以充分利用燃油作为热沉,在保证燃油不超过安全温度限时将机载热负荷有效传递给燃油,最后送入发动机燃烧,而且可以实现利用高温高压的空气作为动力驱动发电装置,满足高速运载器对于电能的需求。经过详细的理论计算和计算机建模仿真,得出的研究结果表明,在1.45 kg·s-1、644℃和3.89 bar(绝压)的引气条件下,通过调整系统的各个部件参数,保证燃油最高温度不超过150℃时,系统的发电量可以达到200 kW;同时在100 kW热负荷条件下可以将舱室的温度控制在30℃左右,能够很好地满足高速运载器对于电能的需求和热负荷的控制。

关键词: 空气压缩制冷, 发电制冷技术, 空气-燃油换热器, 计算机模拟, 传热, 热力学

Abstract:

At present, the research of high-speed vehicle has become a hot issue in the field of aviation science at home and abroad. With the increase of speed, the traditional air heat sink can no longer be used as refrigerant of environmental control system alone. At the same time, the rapid increase of electronic equipment brings more heat load and more power consumption. Therefore, the power generation and refrigeration capacity become two major problems restricting the performance improvement of high-speed vehicle. Based on the basic air compressor refrigeration cycle and the existing fuel as the heat sink environmental control system, this paper proposes a new type of high-speed carrier power generation refrigeration technology, and makes a detailed analysis of its steady-state performance. This scheme can make full use of fuel as heat sink, effectively transfer airborne heat load to fuel when the fuel does not exceed the safe temperature limit, and finally send it to the engine for combustion. It can also realize the use of high-temperature and high-pressure air as power-driven power generation device to meet the power demand of high-speed carriers. Through detailed theoretical calculation and computer modelling and simulation, the research results show that under the conditions of 1.45 kg·s-1, 644℃ and 3.89 bar (absolute pressure), the power generation of the system can reach 200 kW by adjusting the parameters of each component of the system to ensure that the maximum fuel temperature does not exceed 150℃, and at the same time, the temperature of the cabin can be controlled at about 30℃ under 100 kW heat load. It satisfies the requirement of high-speed vehicle for electric energy and the control of heat load very well.

Key words: air compression refrigeration, power generation refrigeration technology, air-fuel heat exchanger, computer simulation, heat transfer, thermodynamics

中图分类号: 

  • V 219

图1

系统方案原理"

表1

主要参数说明"

参数数值
引气流量mr/(kg·s-1)0.75
涡轮落压比πt20
涡轮效率ηt0.75
压气机升压比πc2
压气机绝热效率ηc0.85
燃油比耗Ce/(kg·N-1·h-1)0.1225
计算飞行时间τ0/s4320
升阻比K6.5

表2

理论计算结果"

主要参数计算结果
发电涡轮输出轴功Lt1317.9 kW
制冷涡轮输出轴功Lt289.4 kW
压缩机耗功Lc81.9 kW
2点压力p219.4 kPa
2点温度T2280℃
3点压力p39.45 kPa
3点温度T393℃
4点压力p418.9 kPa
4点温度T4198.56℃
5点压力p59.1 kPa
5点温度T5107.2℃
6点温度T6-35.3℃

图2

仿真结果与性能参数图"

1 庞丽萍, 邹凌宇, 阿嵘, 等. 高速运载器燃油热管理系统优化[J]. 北京航空航天大学学报, 2019, 45(2): 252-258.
Pang L P, Zou L Y, A R, et al. Optimization of fuel heat management system for high-speed aircraft [J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 252-258.
2 张绍芳, 叶蕾. 国外高超声速飞行器及技术发展综述[J]. 中国航天, 2016, (12): 16-20.
Zhang S F, Ye L. A review of the development of foreign hypersonic vehicles and technologies [J]. Aerospace China, 2016, (12): 16-20.
3 Yin H S, Shen X, Huang Y. Modeling dynamic responses of aircraft environmental control systems by coupling with cabin thermal environment simulations [J]. Building Simulation, 2016, 9(4): 459-468.
4 Jeffrey F, Philip O, Michael G, et al. Challenges and opportunities for electric aircraft thermal management [J]. Aircraft Engineering & Aerospace Technology, 2014, 86(6): 519-524.
5 Yu S, Ganev E. Next generation power and thermal management system [J]. SAE International Journal of Aerospace, 2009, 1(1): 1107-1121.
6 Roskilly A P, Yan J. Sustainable thermal energy management [J]. Energy Conversion and Management, 2018, 159: 396-397.
7 Doman D B. Optimal cruise altitude for aircraft thermal management [J]. Journal of Guidance Control and Dynamics, 2015, 38: 2084-2095.
8 Howard C E. Thermal management a challenge for designers of future military aircraft [J]. Military and Aerospace Electronics, 2008, 19(4): 12.
9 Yu X, Mao Y. Research and simulation of hypersonic aircraft thermal management system and its control model [J]. Journal of Aerospace Power, 2018, 33: 741-751.
10 寿荣中, 何慧珊. 飞行器环境控制[M]. 北京: 北京航空航天大学出版社, 2004: 143-198.
Shou R Z, He H S, Aircraft Environmental Control [M]. Beijing: Beihang University Press, 2004: 143-198.
11 曾庆华. 飞行控制器的多学科综合环境研究[J]. 航空计算技术, 2002, (4): 65-68.
Zeng Q H. The multidisciplinary synthesis environment research of flight controller's design [J]. Aeronautical Computer Technique, 2002, (4): 65-68.
12 祁成武, 尹本浩, 王延, 等 基于压缩制冷的便携式特种电子设备冷却系统[J]. 制冷学报, 2017, 38(1): 95-99.
Qi C W, Yin B H, Wang Y, et al. A portable cooling system based on compression refrigeration [J]. Journal of Refrigeration2017, 38(1): 95-99.
13 牟笑迎, 吴玉庭, 马重芳. 蒸气压缩制冷在高热流电子器件冷却中的应用[J]. 制冷与空调, 2009, 9(5) : 5-9.
Mu X Y, Wu Y T, Ma C F. Application of vapor compression refrigeration to high heat flux microelectronics cooling [J]. Refrigeration and Air-Conditioning, 2009, 9(5): 5-9.
14 郝毓雅, 王婕. 飞机燃油热管理系统分析[J]. 现代机械, 2015, (3): 77-82.
Hao Y Y, Wang J. The analysis of aircraft fuel thermal management system [J]. Modern Machinery, 2015, (3): 77-82.
15 Gabriele H. Refrigerants for mobile air conditioning [J]. ATZ Worldwide, 2017, 119: 16-21.
16 Aized T, Hamza A. Thermodynamic analysis of various refrigerants for automotive air conditioning system [J]. Arabian Journal for Science and Engineering, 2019, 44: 1697-1707.
17 袁美名, 常士楠, 洪海华, 等. 飞机机载综合热管理系统仿真研究[J]. 航空科学技术, 2008, (4): 30-34.
Yuan M M, Chang S N, Hong H H, et al. Simulation of aircraft integrated thermal management system [J]. Aeronautical Science and Technology, 2008, (4): 30-34.
18 Dreepaul R K. A study of alternative refrigerants for the refrigeration and air conditioning sector in Mauritius [J]. IOP Conference Series: Earth and Environmental Science, 2017, 93: 012054.
19 Evgeni G. High-reactance permanent magnet machine for high-performance power generation systems [J]. SAE Transactions, 2006, 115: 888-897.
20 Mahefkey T, Yerkes K, Donovan B, et al. Thermal management challenges for future military aircraft power systems [J]. SAE Transactions, 2004, 113: 1965-1973.
21 Maiorano L P, Molina J M. Challenging thermal management by incorporation of graphite into aluminium foams [J]. Materials & Design, 2018, 158: 160-171.
22 Iqbal M A, Macha N K, Danesh W, et al. Thermal management challenges and mitigation techniques for transistor-level 3-D integration [J]. Microelectronics Journal, 2019, 91: 61-69.
23 徐伟, 田会峰, 常徐. 基于飞行器的环境监测系统设计[J]. 自动化与仪器仪表, 2019, (5): 7-9.
Xu W, Tian H F, Chang X. Design of environmental monitoring system based on aircraft [J]. Automation & Instrumentation, 2019, (5): 7-9.
24 汪琳阁, 罗贵友, 沙连帅, 等. 基于四旋翼飞行器的环境参数监测系统[J]. 中国战略新兴产业, 2018, (16): 153.
Wang L G, Luo G Y, Sha L S, et al. Environmental parameter monitoring system based on quadrotor [J]. China s Strategic Emerging Industries, 2018, (16): 153.
25 Raman K S, Saif N A, Neeraj P, et al. Waste heat energy utilization in refrigeration and air-conditioning [J]. Complex Adaptive Systems, 2016, 95: 507-515.
26 王文龙, 王伟. 下一代战斗机综合环境控制/热管理系统开发现状[J]. 飞机设计, 2004, (1): 74-76.
Wang W L, Wang W. Development of integrated environmental control system/thermal management system (IECS/TMS) for next generation fighter aircraft [J]. Aircraft Design, 2004, (1): 74-76.
27 Phelan P E, Chiriac V, Lee T Y T. Current and future miniature refrigeration cooling technologies for high power microelectronics [J]. IEEE Transactions on Components and Packaging Technologies, 2002, 25(3): 356-365.
28 Allan J O. The miniature, reversed Stirling cycle cryo-cooler: integrated simulation of performance [J]. Cryogenics, 1999, 39(3): 253-266.
29 Peter J S, Ray R. Development and experimental test of an analytical model of the orifice pulse tube refrigerator [J]. Advances in Cryogenic Engineering, 1988, 33: 851-859.
30 Ganev E, Koerner M. Power and thermal management for future aircraft [C]// SAE 2013 AeroTech Congress & Exhibition. SAE International, 2013: 2273.
[1] 李攀, 孔慧, 宋卓栋, 张作毅, 王云芳. 甲醇-甲醛-聚甲氧基二甲醚三元体系汽液平衡[J]. 化工学报, 2020, 71(S1): 7-14.
[2] 李阳, 常守金, 胡海涛, 孙浩然, 赖展程, 刘善敏. 飞行器机载精密仪器温控系统性能的实验研究[J]. 化工学报, 2020, 71(S1): 77-82.
[3] 詹宏波, 郑文远, 文涛, 张大林. 微尺度通道内R134a的冷凝传热实验研究[J]. 化工学报, 2020, 71(S1): 83-89.
[4] 刘秀峰, 张诗, 周志杰, 郑浩, 王成泽, 时红远, 李梦杰. 换热器结构优化与换热性能评价指标研究[J]. 化工学报, 2020, 71(S1): 98-105.
[5] 刘子初, 全贞花, 赵耀华, 靖赫然, 姚孟良, 刘新. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128.
[6] 裴后举, 蒋彦龙, 施红, 崔永龙, 陈常栋, 钱晓辉. 基于M-L湍流模型的浮空器强迫对流换热[J]. 化工学报, 2020, 71(S1): 136-141.
[7] 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157.
[8] 孙苏芮, 王德昌, 张金翠, 刘振, 李延辉. 膜蓄能器放能过程的传热传质特性分析[J]. 化工学报, 2020, 71(S1): 158-165.
[9] 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171.
[10] 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186.
[11] 陈玮玮, 方贤德, 鹿世化, 林福建, 张烨. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211.
[12] 王瑞琪, 高赞军, 杨华, 胡文超, 詹宏波. 机载冷源参数对蒸发循环系统性能的影响[J]. 化工学报, 2020, 71(S1): 212-219.
[13] 王晨, 折晓会, 张小松. 含空气净化过程的液态空气储能热力学研究[J]. 化工学报, 2020, 71(S1): 23-30.
[14] 常健佩, 黄翔, 安苗苗, 李朝阳. 蒸发冷却冷水机组的原理、性能与适用性分析[J]. 化工学报, 2020, 71(S1): 236-244.
[15] 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .