化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3247-3257.doi: 10.11949/0438-1157.20191126

• 能源和环境工程 • 上一篇    下一篇

基于直流内阻和交流阻抗特性的PEMFC水管理状态分析

王茹1(),沈永超2,卫东2(),郭倩2   

  1. 1.中国计量大学基建处,浙江 杭州 310018
    2.中国计量大学机电工程学院,浙江 杭州 310018
  • 收稿日期:2019-11-20 修回日期:2020-02-27 出版日期:2020-07-05 发布日期:2020-05-09
  • 通讯作者: 卫东 E-mail:04a4400007@ cjlu.edu.cn;wd101@cjlu.edu.cn
  • 作者简介:王茹(1969—),女,本科,工程师,04a4400007@ cjlu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2017YFF0210702);浙江省基础公益研究计划项目(LGG18E070004)

Analysis of PEMFC water management status based on DC internal resistance and AC impedance characteristics

Ru WANG1(),Yongchao SHEN2,Dong WEI2(),Qian GUO2   

  1. 1.Infrastructure Construction Department, China Jiliang University, Hangzhou 310018, Zhejiang, China
    2.College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, Zhejiang, China
  • Received:2019-11-20 Revised:2020-02-27 Online:2020-07-05 Published:2020-05-09
  • Contact: Dong WEI E-mail:04a4400007@ cjlu.edu.cn;wd101@cjlu.edu.cn

摘要:

基于Randles等效电路,研究质子交换膜燃料电池(PEMFC)操作温度和湿度耦合关系,建立电堆直流内阻和交流阻抗特性模型。通过两种方法相结合,研究不同操作条件下的电化学阻抗谱图和U-I输出特性曲线的变化规律,以及不同水管理状态在直流内阻和交流阻抗变化规律中体现出的对应关系,进而分析水管理状态对电堆输出性能的影响作用。仿真和实验结果表明,温湿度耦合关系下的不同水管理状态,在电化学阻抗谱图和U-I特性曲线中具有一致的变化规律和对应的量化关系;电堆输出性能中的膜干、水淹等现象,在直流内阻值和交流阻抗图的变化中具有明显的表现特征;通过研究水管理状态对两者的影响,能够实现操作条件的优化和电堆输出性能的优化控制。

关键词: 电化学阻抗谱, 湿度, 操作条件, 质子交换膜燃料电池, 水管理状态

Abstract:

Based on the Randles equivalent circuit, this paper studies the coupling relationship between operating temperature and humidity of proton exchange membrane fuel cell (PEMFC), establishes the direct current (DC) internal resistance and alternating current (AC) impedance characteristics of the stack, and studies the electrochemical impedance spectrum and U-I output characteristics under different operating conditions. The AC impedance method and the U-I characteristic method are combined to obtain the correspondence between the AC impedance and the DC internal resistance under different water management states, and the influence of the water management state on the output performance of the stack is analyzed. The simulation and experimental results show that the different water management states have consistent variation rules and corresponding quantitative relationships in the AC impedance spectrum and the U-I characteristic curve. The phenomenon of membrane dryness, flooding, etc. in the output performance of the stack is in the DC internal resistance. And the change of the AC impedance map has clear performance characteristics; By studying the impact of water management states on both, it is possible to optimize the operating conditions and optimize the output performance of the stack.

Key words: EIS, humidity, operation conditions, PEMFC, water management

中图分类号: 

  • TM 911.4

图1

Randles等效电路"

图2

电堆温度与湿度的耦合关系"

表1

模型仿真参数表"

参数数值参数数值参数数值
Va0~30 L/minδ80 μmα0.05
Vc0~150 L/minS180 cm2tm0.051 mm
PH2,dry0.1~0.3 MPaN16Cg4 mol/L
pair0.15~0.45 MPaRH35%~95%T308~368 K
MH2,in0.1~0.4 g/sMair0.36~0.8 g/st*5~60 s

图3

活化内阻Rf变化规律"

图4

欧姆内阻Rm变化规律"

图5

浓差内阻Rd的变化规律"

表2

不同操作条件下Rf、Rm、Rd和Rstack阻值计算结果"

参数优化正常1正常2膜干水淹
i/(A/cm2)0~0.060.06~0.70.7~0.90~0.090.09~0.750.75~0.90~0.090.09~0.750.75~0.90~0.030.03~0.70.4~0.8
U/V13.2~15.410.7~13.18.65~10.712.13~15.45.8~15.43.25~5.811.8~15.44.1~11.81.44~4.312.0~15.51.14~12.00.5~11.5
Tstack/K306~309306~335335~343309~312310~338338~345303~306306~330330~343293~303303~333320~333
RHstack40%~50%50%~70%70%~80%40%~45%45%~55%55%~70%40%~50%60%~75%75%~85%30%~35%35%~40%65%~95%
Rf/(Ω·cm2)33.7~73.73.1~33.71.66~3.122.58~90.12.2~22.61.38~2.223.8~76.53.1~23.81.68~2.1188.2~161.45.4~100.42.05~11.5
Rm/(Ω·cm2)4.43~5.33.28~4.41.52~3.310.1~11.06.82~10.17.12~8.812.4~13.16.02~12.45.97~8.016.66~18.515.65~18.32.04~4.40
Rd/(Ω·cm2)0.02~0.030.03~1.121.12~4.340.02~0.030.03~1.171.17~5.010.02~0.030.03~2.452.45~7.900.02~0.030.03~0.541.91~27.6
Rstack/(Ω·cm2)38.2~78.36.8~38.36.7~8.5332.7~100.39.02~32.79.02~13.536.3~89.09.15~40.17.37~15.683.4~176.820.4~78.39.85~30.5

图6

电堆总内阻Rstack变化规律"

图8

不同水管理状态下电化学阻抗图谱实验结果"

图9

不同水管理状态下U-I特性输出曲线实验结果"

图7

燃料电池堆实验系统"

表3

质子交换膜燃料电池堆性能参数"

电堆参数数值电堆参数数值
额定功率1.5 kW输出电流范围0~160 A
额定电压10.5 V输出电压范围7.2~16 V
额定电流143 A氢气/空气压力0.1~0.15 MPa

表4

电化学阻抗图误差分析表"

电流密度/(A/cm2)不同状态下误差/%
优化正常1正常2膜干1膜干2
0.1Rm/(Ω·cm2)1.132.012.482.452.80
Rstack/(Ω·cm2)-1.93-3.36-3.07-5.13-5.53
0.4Rm/(Ω·cm2)1.401.022.49-1.78-2.45
Rstack/(Ω·cm2)-1.99-2.59-2.27-3.84-4.02
0.8Rm/(Ω·cm2)1.891.281.681.491.16
Rstack/(Ω·cm2)-2.27-3.23-3.41-3.49-3.62
1 李英, 周勤文, 张香平. 质子交换膜燃料电池稳态自增湿性能分析[J]. 化工学报, 2014, 65(5): 1893-1899.
Li Y, Zhou Q W, Zhang X P. Numerical analysis of steady state self-humidification performance of PEMFC[J]. CIESC Journal, 2014, 65(5): 1893-1899.
2 陈维荣, 牛茁, 韩喆, 等. 水冷PEMFC 热管理系统流量跟随控制策略[J]. 化工学报, 2017, 68(4): 1490-1498.
Chen W R, Niu Z, Han Z, et al. Flow following control strategy for thermal management of water-cooled PEMFC[J]. CIESC Journal, 2017, 68(4): 1490-1498.
3 陈思彤, 李微微, 王学科, 等. 相变材料用于质子交换膜燃料电池的热管理[J]. 化工学报, 2016, 67: 1-6.
Chen S T, Li W W, Wang X K, et al. Thermal management using phase change materials for proton exchange membrane fuel cells[J]. CIESC Journal, 2016, 67: 1-6.
4 Giner-Sanz J J, Ortega, Pérez-Herranz V. Statistical analysis of the effect of temperature and inlet humidities on the parameters of a semiempirical model of the internal resistance of a polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2018, 381(31): 84-93.
5 Giner-Sanz J J, Ortega E, Pérez-Herranz V. Mechanistic equivalent circuit modelling of a commercial polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2018, 379(1): 328-337.
6 Russo L, Sorrentino M, Polverino P, et al. Application of Buckingham π theorem for scaling-up oriented fast modelling of proton exchange membrane fuel cell impedance[J]. Journal of Power Sources, 2017, 353(15): 277-286.
7 Pivac I, Barbir F. Inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells — a review[J]. Journal of Power Sources, 2016, 326(15): 112-119.
8 Jahnke T, Futter G, Lazr A, et al. performance and degradation of proton exchange membrane fuel cells: state of the art in modeling from atomistic to system scale[J]. Journal of Power Sources, 2016, 304(1): 207-233.
9 Georg A F, Gazdzicki P, Friedrich K A, et al. Physical modeling of polymer-electrolyte membrane fuel cells: understanding water management and impedance spectra[J]. Journal of Power Sources, 2018, 391(1): 148-161.
10 Laribi S, Mammar K, Sahli Y, et al. Air supply temperature impact on the PEMFC impedance[J]. Journal of Energy Storage, 2018, 17: 327-335.
11 Vivona D, Casalegno A, Baricci A. Validation of a pseudo 2D analytical model for high temperature PEM fuel cell impedance valid at typical operative conditions [J]. Electrochimica Acta, 2019, 310(7): 122-135.
12 Kim J, Luo G, Wang C Y. Modeling liquid water re-distributions in bi-porous layer flow-fields of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2018, 400(1): 284-295.
13 Dai W, Wang H J, Yuan X Z, et al. A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2009, 34(23): 9461- 9478.
14 Wang Z Q, Zeng Y C, Sun S C, et al. Improvement of PEMFC water management by employing water transport plate as bipolar plate[J]. International Journal of Hydrogen Energy, 2017, 42(34): 21922-21929.
15 何晓波, 詹志刚, 张洪凯, 等. 基于水平衡的PEM燃料电池大电流运行优化控制[J]. 工程热物理学报, 2017, 38(9): 1994-2000.
He X B, Zhan Z G, Zhang H K, et al. The optimal control of PEM fuel cell operating at large current density based on water balance [J]. Journal of Engineering Thermophysics, 2017, 38(9): 1994-2000.
16 Salahuddin M, Uddin M N, Hwang G, et al. Superhydrophobic PAN nanofibers for gas diffusionlayers of proton exchange membrane fuel cells for cathodic water management[J]. International Journal of Hydrogen Energy, 2018, 43(25): 11530-11538.
17 Moçotéguy P, Ludwig B, Steiner N Y. Application of current steps and design of experiments methodology to the detection of water management faults in a proton exchange membrane fuel cell stack[J]. Journal of Power Sources, 2016, 303(30): 126-136.
18 Pei P, Li Y, Xu H, et al. A review on water fault diagnosis of PEMFC associated with the pressure drop[J]. Applied Energy, 2016, 173(1): 366-385.
19 Nandjou F, Poirot-Crouvezier J P, Chandesris M, et al. Impact of heat and water management on proton exchange membrane fuel cells degradation in automotive application[J]. Journal of Power Sources, 2016, 326(15): 182-192.
20 Georg A F, Latz A, Jahnke T. Physical modeling of chemical membrane degradation in polymer electrolyte membrane fuel cells: influence of pressure, relative humidity and cell voltage[J]. Journal of Power Sources, 2019, 410(15): 78-90.
21 Zhao J, Jian Q F, Huang Z P, et al. Experimental study on water management improvement of proton exchange membrane fuel cells with dead-ended anode by periodically supplying fuel from anode outlet[J]. Journal of Power Sources, 2019, 435(30): 226-275.
22 陶泽炎. 基于内阻检测的PEMFC温湿度特性及控制规则研究[D]. 杭州: 中国计量大学, 2016.
Tao Z Y. Research on PEMFC temperature and humidity performances and control rules based on internal resistance detection[D]. Hangzhou: China Jiliang University, 2016.
23 高志, 蔡慧, 卫东, 等. 水冷型PEMFC输出特性建模与仿真分析[J]. 太阳能学报, 2019, 40(5): 1472-1480.
Gao Z, Cai H, Wei D, et al. Water-cooling PEMFC output characteristic modeling and simulation analysis[J]. Acta Energiae Solaris Sinica, 2019, 40(5): 1472-1480.
24 王振, 卫东, 叶洪吉. 基于频率正割角计算的燃料电池堆水热管理状态诊断方法[J]. 化工学报, 2018, 69(10): 4371-4377
Wang Z, Wei D, Ye H J. Method for diagnosing state of hydrothermal management of fuel cell stack based on frequency secant angle[J]. CIESC Journal, 2018, 69(10): 4371-4377.
25 Ijaoaola O S, El-Hassan Z, Ogungbemi E, et al. Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC) [J]. Energy, 2019, 179(15): 246-267.
26 Shang D H, Ma B, Zhang G S, et al. Impedance analysis of proton exchange membrane fuel cells under different discharge conditions[J]. Journal of Xi'an Jiaotong University, 2008, 42(8): 622-625.
27 Subin K, Jithesh P K. Experimental study on self-humidified operation in PEM fuel cells[J]. Sustainable Energy Technologies and Assessments, 2018, 27: 17-22.
28 Lu H X, Chen J, Yan C Z. On-line fault diagnosis for proton exchange membrane fuel cells based on a fast electrochemical impedance spectroscopy measurement[J]. Journal of Power Sources, 2019, 430(1): 233-243.
29 Miassa T A, Olivier B, Emmanuel G. Identification of a PEMFC fractional order model[J]. International Journal of Hydrogen Energy, 2017, 42(2): 1499-1509.
30 Dao D V, Adilblish G, Lee I, et al. Enhanced electrocatalytic property of Pt/C electrode with double catalyst layers for PEMFC[J]. International Journal of Hydrogen Energy, 2019, 44(45): 24580-24590.
[1] 方黄峰, 刘瑶瑶, 张文彪. 基于LSTM神经网络的流化床干燥器内生物质颗粒湿度预测[J]. 化工学报, 2020, 71(S1): 307-314.
[2] 吴延鹏, 赵薇, 陈凤君. 不同相对湿度下亲疏水纳米纤维膜空气过滤性能实验研究[J]. 化工学报, 2020, 71(S1): 471-478.
[3] 李屹, 张小松. 一种基于电渗析的空气直接富氧装置影响因素[J]. 化工学报, 2018, 69(S2): 388-393.
[4] 王振, 卫东, 叶洪吉. 基于频率正割角计算的燃料电池堆水热管理状态诊断方法[J]. 化工学报, 2018, 69(10): 4371-4377.
[5] 涂耀东, 葛天舒, 王如竹. 吸附除湿换热:弱关联热质耦合传递过程[J]. 化工学报, 2016, 67(S1): 97-102.
[6] 朱晓兵, 张建辉, 李小松, 刘景林, 刘剑豪, 金灿. 空气源电化学连续分离制氧(Ⅰ):单池性能优化[J]. 化工学报, 2016, 67(5): 2022-2032.
[7] 聂瑶, 丁炜, 魏子栋. 质子交换膜燃料电池非铂电催化剂研究进展[J]. 化工学报, 2015, 66(9): 3305-3318.
[8] 彭跃进, 彭赟, 李伦, 刘志祥, 陈维荣. 质子交换膜燃料电池电源系统停机特性及控制策略[J]. 化工学报, 2015, 66(3): 1178-1184.
[9] 沈俊, 周兵, 邱子朝, 涂正凯, 刘志春, 刘伟. 质子交换膜燃料电池强化传质[J]. 化工学报, 2014, 65(S1): 421-425.
[10] 蔡光旭1,2,郭建伟2,王佳1. 交流阻抗技术在质子交换膜燃料电池上的研究进展[J]. 化工进展, 2014, 33(01): 56-63.
[11] 高蓬辉, 纪绍斌, 衡文佳, 周兴业, 周国庆. 湿度差驱动下溶液蒸发冷冻过程中冰体的发展规律[J]. 化工学报, 2013, 64(8): 2820-2826.
[12] 刘郅媛, 熊金平. 聚天门冬氨酸酯聚脲涂层湿热失效行为的电化学[J]. 化工学报, 2013, 64(8): 2962-2968.
[13] 卜永东, 沈寅麒, 杜小泽, 杨立军, 杨勇平. 仿蜂巢微通道分叉结构的甲醇重整制氢[J]. 化工学报, 2013, 64(6): 2177-2185.
[14] 汪飞杰, 杨代军, 张浩, 马建新. 1.5 kW质子交换膜燃料电池堆动态工况响应特性[J]. 化工学报, 2013, 64(4): 1380-1386.
[15] 耿世彬,肖明星. 钠石灰动态吸附CO2效能分析[J]. 化工进展, 2013, 32(10): 2463-2466.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王微微. 油气两相流空隙率测量[J]. CIESC Journal, 2007, 15(3): 339 -344 .
[2] . 沉痛悼念李绍芬、许锡恩教授 [J]. CIESC Journal, 1999, 50(2): 288 .
[3] 韩润林,张小勇,李佐虎,张建安. 枯草杆菌溶栓酶的恒溶氧发酵研究 [J]. CIESC Journal, 2000, 51(S1): 268 -271 .
[4] 吴卫泽,武练增,刘振宇. 超临界CO_2萃取蛋黄油及数学模拟 [J]. CIESC Journal, 2001, 52(2): 130 -134 .
[5] 宋兴福, 汪瑾, 罗妍, 刘够生, 于建国. 六氨氯化镁热解过程及其非等温动力学 [J]. 化工学报, 2008, 59(9): 2255 -2259 .
[6] 吴献东, 金晓明, 苏宏业. 基于NSGA-Ⅱ的模拟移动床色谱分离过程多目标操作优化 [J]. 化工学报, 2007, 58(8): 2038 -2044 .
[7] 蔡萌萌, 蔡宏, 单羿, 王玉洁, 何丹, 赵庆良. 活性污泥合成PHAs单体组分的调控方法 [J]. 化工学报, 2007, 58(10): 2427 -2431 .
[8] 闻荻江;冯芳.

正十二烷基硫醇对铜在酸性介质中的缓蚀行为

[J]. CIESC Journal, 2005, 56(7): 1363 -1367 .
[9] 张东昌,林载祁,林纪方. 实现滴状冷凝新途径的研究——(Ⅲ)滴状冷凝传热系数的测定和寿命实验 [J]. CIESC Journal, 1987, 38(3): 274 -280 .
[10] 范文元,查富芳. 表面张力梯度对填充蒸馏塔性能的影响 [J]. CIESC Journal, 1987, 38(3): 350 -359 .