化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 328-334.doi: 10.11949/0438-1157.20191125

• 过程系统工程 • 上一篇    下一篇

飞机环控系统空气循环机仿真建模及试验校核

孟繁鑫1(),孙佳宁2,周月1,高赞军1,程定斌1   

  1. 1.南京机电液压工程研究中心航空机电系统综合航空科技重点试验室,江苏 南京 211106
    2.南京机电科技有限公司,江苏 南京 211102
  • 收稿日期:2019-10-07 修回日期:2019-11-13 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 孟繁鑫 E-mail:sunsky170@163.com
  • 作者简介:孟繁鑫(1983—),男,博士,高级工程师,sunsky170@163.com

Modeling and validating of air cycle machine in aircraft environmental control system

Fanxin MENG1(),Jianing SUN2,Yue ZHOU1,Zanjun GAO1,Dingbin CHENG1   

  1. 1.Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration in Nanjing Engineering Institute of Aircraft Systems, Nanjing 211106, Jiangsu, China
    2.Nanjing Aircraft Systems Science and Technology Limited Company, Nanjing 211102, Jiangsu, China
  • Received:2019-10-07 Revised:2019-11-13 Online:2020-04-25 Published:2020-05-22
  • Contact: Fanxin MENG E-mail:sunsky170@163.com

摘要:

建立了飞机环境控制系统中压气机-涡轮-风扇式空气循环机的数学模型并开发了性能仿真模型;提出了性能试验原理及方法并开展了性能试验获得了设计工况下测试数据;通过对比不同转速下压气机增压比和效率特性、不同膨胀比条件下涡轮的温降特性、风扇压升特性等仿真结果与试验数据,修正了所建仿真模型相关参数并校核了模型有效性。结果表明,提出的仿真建模方法能够对空气循环机进行准确计算,经修正后仿真误差可以控制在±10%以内,仿真精度满足飞机环境控制系统工程设计要求,对环控系统及部件研制具有重要意义。

关键词: 热力学, 计算机模拟, 动态建模, 试验校核, 空气循环, 环控系统

Abstract:

Mathematical models of compressor-turbine-fan air cycle machine were established in aircraft environmental control system. The simulation models of air cycle machine were developed. The performance test principles and procedures are put forward for the product and performance tests are carried out to obtain the performance data under design conditions. By comparing simulation results and experimental data for compressor pressure ratio and efficiency characteristics, turbine temperature drop, fan pressure rise, the simulation model was corrected and validated. Results show that the modeling method provided in this paper can calculate the performance of the air cycle machine accurately with the ±10% simulation error. The simulation precision meets the requirements of aircraft environmental control system engineering design and it is helpful to develop environmental control system and its components.

Key words: thermodynamics, computer simulation, dynamic modeling, experimental check, air cycle, environmental control system

中图分类号: 

  • V 245.3

图1

三轮空气循环机试验原理"

表1

压气机仿真模型性能校核"

转速/

(r·min-1

流量/

(kg·s-1

压 比效 率
试验计算误差/%试验计算误差/%
250000.11.151.171.70.800.800.0
0.151.031.073.90.400.3610.0
300000.11.301.281.50.850.850.0
0.151.201.200.00.750.715.3
350000.151.371.370.00.800.800.0
0.21.221.230.80.600.583.3
400000.21.451.431.40.800.791.3
0.251.131.084.40.200.1810.0
450000.21.621.610.60.800.800.0
0.251.451.450.00.700.682.9

表2

压气机仿真模型进出口参数校核"

转速/

(r·min-1

流量/

(kg·s-1

出口压力/kPa出口温度/℃
试验计算误差/%试验计算误差/%
25000369116.9115.90.943.7440.7
30000462125.9124.21.451.750.71.9
35000486138.4136.61.362620.0
40000567148.4146.21.57067.93.0
45000691160.3159.60.48080.20.2

表3

涡轮仿真模型的试验校核"

压力/

kPa

温度/

流量/

(kg·h-1

背压/

kPa

转速/

(r·min-1

出口温度/℃
试验计算误差
180.040.4504100.52588010.27.42.8
216.945.7683100.931730-0.62.73.3
260.846.2916101.837300-10.4-6.73.7
314.347.01125102.740170-14.6-14.70.1
426.049.31577105.145350-24.7-25.10.4

表4

风扇仿真模型的设计工况校核"

试验参数试验值仿真值误差/%
进口温度/℃3939输入
进口压力/kPa100100
进口流量/(kg·h-125592559
风扇转速/(r·min-14400044000
出口温度/℃49466
出口压力/kPa104.91040.9

表5

三轮空气循环机试验数据与仿真结果对比"

参数试验仿真误差/%
压气机进口温度/℃115.3115输入
进口压力/kPa303303
进口流量/(kg·h-116001600
出口压力/kPa4434254
出口温度/℃1661641
涡轮进口温度/℃48.748.7输入
进口流量/(kg·h-116001600
进口压力/kPa418418
出口压力/kPa1071070
出口温度/℃-19.2-2319
风扇进口温度/℃3939输入
进口压力/kPa100100
进口流量/(kg·h-125592559
出口温度/℃49466
风扇压升/kPa4.9419
涡轮转速/(r·min-144000430003
1 寿荣中, 何慧姗. 飞行器环境控制[M]. 北京: 北京航空航天大学出版社, 2004: 440.
Shou R Z, He H S. Aircraft Environmental Control [M]. Beijing: Beihang University Press, 2004: 440.
2 寿荣中, 何慧姗. 飞行器空气调节[M]. 北京: 北京航空航天大学出版社, 1993: 355.
Shou R Z, He H S. Aircraft Air Conditioning [M]. Beijing: Beihang University Press, 1993: 355.
3 袁修干. 旅客机座舱空气参数调节[M]. 北京: 国防工业出版社, 1980: 215.
Yuan X G. Civil Aircraft Cabin Air Parameter Conditioning [M]. Beijing: National Defense Industry Press, 1980: 215.
4 Fessler E. 757 environmental control system [J]. Tech. Air, 1983, 41(5): 7-10.
5 唐有才, 王占勇, 孙金立. 现代军用飞机环境控制系统探讨[J]. 航空科学技术, 2002, (4): 35-37.
Tang Y C, Wang Z Y, Sun J L. Discussion on environmental control system for modern military aircraft [J]. Aeronautical Science and Technology, 2002, (4): 35-37.
6 苏向辉, 许锋, 昂海松. 飞机环境控制系统的现状与未来[J]. 航空制造技术, 2002, (10): 34-36+40.
Su X H, Xu F, Ang H S. Status and future of aircraft environmental control systems [J]. Aeronautical Manufacturing Technology, 2002, (10): 34-36+40.
7 刘铭. 国外飞机综合环境控制系统[J]. 航空科学技术, 2004, (2): 28-31.
Liu M. Foreign aircraft integrated environmental control system [J]. Aeronautical Science and Technology, 2004, (2): 28-31.
8 Eichler J. Simulation study of an aircraft environmental control system dynamic response [J]. Journal of Aircraft, 1975, 12(10): 757-758.
9 何慧姗, 郝劲松. 飞机环控系统的优化设计[C]//中国航空学会人体工程 航医 救生专业分会环控学术交流会. 1995.
He H S, Hao J S. Optimization design of aircraft environmental control system [C]// Ergonomic Engineering, Aviation Medicine, Life Saving Branch of Chinese Aviation Society Environmental Control Academic Exchange Meeting. 1995.
10 邓小龙. 飞机环境控制系统动态仿真及研究[D]. 北京: 北京航空航天大学, 2003.
Deng X L. Dynamic simulation and research of aircraft environment control system [D]. Beijing: Beihang University, 2003.
11 He J, Zhao J Q, Sun W. Dynamic simulation of bootstrap air cycle refrigeration components for aircraft environmental control system [J]. Journal of System Simulation, 2004, 16(4): 727-729.
12 宋俊. 军用飞机环境控制系统综合仿真技术[D]. 北京: 北京航空航天大学, 2000.
Song J. Comprehensive simulation technology of environment control system for military aircraft [D]. Beijing: Beijing University of Aeronautics and Astronautics, 2000.
13 何君, 赵竞全, 孙薇. 航空升压式空气循环制冷组件动态特性的仿真研究[J]. 系统仿真学报, 2004, (4): 117-119.
He J, Zhao J Q, Sun W. Simulation study on dynamic characteristics of air booster air circulation refrigeration module [J]. Journal of System Simulation, 2004, (4): 117-119.
14 李俊杰. 飞机升压式空气制冷循环系统仿真研究[J]. 电光与控制, 2009, (6): 93-96.
Li J J. Simulation study of aircraft booster air refrigeration cycle system [J]. Electronics Optics & Control, 2009, (6): 93-96.
15 刘宝霞, 李运祥. 飞机环境控制系统出口温度计算方法[J]. 沈阳航空工业学院学报, 2006, 23(2): 6-8.
Liu B X, Li Y X. Calculation method of exit temperature of aircraft environmental control system [J]. Journal of Shenyang Institute of Aeronautical Industry, 2006, 23(2): 6-8.
16 杨锋, 袁修干. 基于MATLAB的飞机环境控制系统动态仿真[J]. 系统仿真学报, 2002, (6): 782-784, 795.
Yang F, Yuan X G. Dynamic simulation of aircraft environment control system based on MATLAB [J]. Journal of System Simulation, 2002, (6): 782-784, 795.
17 宋俊虓, 袁修干. MATLAB在飞机环境控制系统仿真中的应用[J]. 北京航空航天大学学报, 2002, 28(1): 43-46.
Song J H, Yuan X G. MATLAB application in aircraft environment control system simulation [J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(1): 43-46.
18 邹冰, 赵竞全, 何君. 飞机环境控制系统计算机仿真模型库的开发[J]. 计算机仿真, 2006, (3): 19-23.
Zou B, Zhao J Q, He J. Development of computer simulation model library for aircraft environment control system [J]. Computer Simulation, 2006, (3): 19-23.
19 赵俊茹, 史忠科. 飞机环境控制系统的仿真研究[J]. 计算机测量与控制, 2005, (6): 35-37.
Zhao J R, Shi Z K. Simulation study of aircraft environment control system [J]. Computer Measurement & Control, 2005, (6): 35-37.
20 姚洪伟, 王浚. 飞机环控系统建模与换热器参数优化研究[J]. 系统仿真学报, 2005, (12): 3040-3042.
Yao H W, Wang J. Modeling of aircraft environmental control system and optimization of heat exchanger parameters [J]. Journal of System Simulation, 2005, (12): 3040-3042.
21 刘博强, 袁修干, 李敏. 板翅式湿热交换器动态数学模型[J]. 航空学报, 1995, 16(1): 12-17
Liu B Q, Yuan X G, Li M. A dynamic mathematical model study of the plate-fin humid heat exchanger [J]. Acta Aeronautica et Astronautica Sinica, 1995, 16(1): 12-17
22 宋俊, 袁修干. 板翅式热交换器MATLAB仿真模型[J]. 北京航空航天大学学报, 2001, 27(5): 582-584.
Song J, Yuan X G. MATLAB simulation model of plate-fin heat exchange [J]. Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(5): 582-584.
23 黄素逸, 魏保太. 汽液两相流动与传热[M]. 武汉: 华中理工大学出版社, 1982.
Huang S Y, Wei B T. Vapor-Liquid Two-Phase Flow and Heat Transfer [M]. Wuhan: Huazhong University of Science and Technology Press, 1982.
24 李凡, 陈鑫, 张子琛. 板式换热器的性能仿真[J]. 河北建筑工程学院学报, 2018, (4): 66-68
Li F, Chen X, Zhang Z S. Simulation of the performance of plate heat exchanger [J]. Journal of Hebei Institute of Architectural Engineering, 2018, (4): 66-68
25 Zhao K, Xian X X, Tang H M. CFD simulation different inner structure of air heat exchanger [C]// IOP Conference Series: Earth and Environmental Science. 2018.
26 J·霍尔曼. 传热学[M]. 马庆芳, 马重芳, 王兴国, 译. 北京: 人民教育出版社, 1980.
Hallman J. Heat Transfer [M]. Ma Q F, Ma C F, Wang X G, trans. Beijing: People s Education Press, 1980
27 李防战; 孟光; 王廷兴. 基于特性方程的离心压气机的性能仿真[J]. 计算机仿真, 2005, (5): 38-42.
Li F Z, Meng G, Wang T X. Performance simulation of centrifugal compressor based on characteristic equation [J]. Computer Simulation, 2005, (5): 38-42.
28 杨策, 马朝臣. 一种离心压气机性能仿真数学模型[J]. 航空动力学报, 2000, (4): 22-25.
Yang C, Ma C C. A mathematical model for performance simulation of centrifugal compressor [J]. Journal of Aerospace Power, 2000, (4): 22-25.
29 王企鲲, 陈康民. 微型轴流风扇气动相似特性研究[J]. 机械工程学报, 2010, (4): 116-121.
Wang Q K, Chen K M. Study on aerodynamic similarity of miniature axial fan [J]. Chinese Journal of Mechanical Engineering, 2010, (4): 116-121
30 何永勃, 杨燕辉, 王丽哲. 飞机空气循环机的建模与故障仿真[J]. 计算机仿真, 2012, (8): 72-75.
He Y B, Yang Y H, Wang L Z. Modeling and fault simulation of aircraft air cycle machine [J]. Computer Simulation, 2012, (8): 72-75.
[1] 李攀, 孔慧, 宋卓栋, 张作毅, 王云芳. 甲醇-甲醛-聚甲氧基二甲醚三元体系汽液平衡[J]. 化工学报, 2020, 71(S1): 7-14.
[2] 裴后举, 蒋彦龙, 施红, 崔永龙, 陈常栋, 钱晓辉. 基于M-L湍流模型的浮空器强迫对流换热[J]. 化工学报, 2020, 71(S1): 136-141.
[3] 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171.
[4] 王晨, 折晓会, 张小松. 含空气净化过程的液态空气储能热力学研究[J]. 化工学报, 2020, 71(S1): 23-30.
[5] 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321.
[6] 史璐璐. 大型民用飞机座舱区域多级温度控制系统的研究[J]. 化工学报, 2020, 71(S1): 322-327.
[7] 郭良, 李恒, 庞丽萍, 毛晓东, 赵竞全, 杨晓东. 高速运载器发电/制冷联合系统稳态性能[J]. 化工学报, 2020, 71(S1): 391-396.
[8] 郭栋才, 盛强, 杨鹏, 徐捷, 王泽, 杨波, 曹娇坤. 基于热电效应的高效环控系统[J]. 化工学报, 2020, 71(S1): 404-410.
[9] 马慧才, 刘毅玲, 党晓民. 高空长航时无人机综合热能管理的构型分析[J]. 化工学报, 2020, 71(S1): 417-424.
[10] 杨晓东, 庞丽萍, 阿嵘, 金亮. 高速飞行器燃油热管理系统飞行热航时[J]. 化工学报, 2020, 71(S1): 425-429.
[11] 张洁, 庞丽萍, 曲洪权, 王天博. 基于随机配置网络的机载电子吊舱多工况热模型[J]. 化工学报, 2020, 71(S1): 441-447.
[12] 杨东升, 阿嵘, 张建斌, 王大鹏, 张斌, 徐迎丽, 秦俊杰, 刘淑芬. 航天器舱内环境下非金属增材制造热效应分析[J]. 化工学报, 2020, 71(S1): 486-493.
[13] 谭畯坤, 刘玉东, 耿世超, 陈兵, 童明伟. 真空探针冷冻和复温性能实验测试及数值模拟[J]. 化工学报, 2020, 71(4): 1440-1449.
[14] 罗小燕, 戴聪聪, 程铁栋, 蔡改贫, 刘鑫, 刘吉顺. 基于改进EWT-多尺度熵和KELM的球磨机负荷识别方法[J]. 化工学报, 2020, 71(3): 1264-1277.
[15] 李英泽, 杨路, 王琦, 杨思宇. BGL炉煤气化过程建模和模拟[J]. 化工学报, 2020, 71(3): 1174-1188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .