化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 486-493.doi: 10.11949/0438-1157.20191118

• 材料化学工程与纳米技术 • 上一篇    下一篇

航天器舱内环境下非金属增材制造热效应分析

杨东升1(),阿嵘2,张建斌3,王大鹏1,张斌1,徐迎丽1,秦俊杰1,刘淑芬1   

  1. 1.北京卫星制造厂有限公司,北京 100094
    2.中国空间技术研究院载人航天总体部,北京 100094
    3.中国空间技术研究院,北京 100094
  • 收稿日期:2019-10-07 修回日期:2019-10-23 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 杨东升 E-mail:273060531@qq.com
  • 作者简介:杨东升(1986—),男,博士,高级工程师,273060531@qq.com

Thermal effect analysis of nonmetallic addition manufacturing in spacecraft cabin environment

Dongsheng YANG1(),Rong A2,Jianbin ZHANG3,Dapeng WANG1,Bin ZHANG1,Yingli XU1,Junjie QIN1,Shufen LIU1   

  1. 1.Beijing Spacecrafts, Beijing 100094, China
    2.Institute of Manned Space System Engineering, CAST, Beijing 100094, China
    3.China Academy of Space Technology, Beijing 100094, China
  • Received:2019-10-07 Revised:2019-10-23 Online:2020-04-25 Published:2020-05-22
  • Contact: Dongsheng YANG E-mail:273060531@qq.com

摘要:

针对未来空间站后续运营与维护发展中对无人自主非金属增材制造技术的应用需求,对空间舱内环境下增材制造过程中的热环境进行了分析,对增材制造装置建模,多热源空间分布与产热特性分析,局部保温及整体强化对流设计热扩散效应与温度场仿真,并对增材制造装置的热控措施开展了试验验证。分析表明:密闭装置功耗72~96 W,在初始温度为20℃条件下装置壁面温度维持在29℃左右,与环境之间的散热效率可达21.6 W·m-2,满足空间增材制造的温度要求,满足装置的温度稳定性与可靠性,为我国空间在轨试验验证给予了一定的理论指导,也为未来舱外环境下的热控设计提供新的思路与方案。

关键词: 非金属增材制造, 热力学, 航天器, 环境, 试验验证

Abstract:

In view of application requirement of unattended non-metallic augmentation manufacturing technology in the future operation and maintenance development of space station, the thermal environment in the process of augmentation manufacturing in the space cabin environment is analyzed. The device was modeled, the distribution and heat production characteristics of the multiple heat sources was analyzed, the thermal diffusion effect was controlled, and temperature field simulation of local thermal insulation and integral enhanced convection design were carried out. Results showed that, the power consumption of the airtight device is about 72-96 W, the wall temperature of the device is maintained at about 29℃ when the initial temperature is 20℃, and the heat dissipation efficiency between the device and the environment can reach 21.6 W·m-2, which meets the temperature requirement of space material addition manufacturing and the temperature stability and reliability of the device. It provides certain theoretical guidance for on-orbit test verification in China, and provides new ideas and schemes for future extravehicular environment.

Key words: nonmetallic addition manufacture, thermodynamics, spacecraft, environment, experimental validation

中图分类号: 

  • V 444.3+6

图1

增材制造系统结构组成"

表1

不同工况下各部件功耗测试结果"

序号工况电源/W打印头/W电机/W

监测

装置/W

控制器/W总功耗/W
1电源待机10.210.2
2打印预热10.2+3654
3正常打印110.2+3616101096
4正常打印210.2+16101072

图2

热源阶跃性变化"

图3

装置自然状态下的热分析"

图4

打印块的高效阻热设计"

图5

热控后仿真与试验测试结果"

图6

增材制造装置温度测试平台"

图7

不同工况下装置温度场仿真分析与主要部件实测变化曲线"

表2

低温(-5℃)下的实测温度与仿真对比分析"

序号装置实测温度/℃仿真结果/℃温度差/℃
1电源15.2313.511.72
2电路板117.1214.053.07
3电路板210.368.671.69
4打印头支架5.358.923.57
5打印头上部29.6828.431.25
6送丝电机5.638.161.53
7X电机15.1716.231.06
8Y电机10.6411.811.17
9Z电机12.5612.210.35
1 陈花玲, 罗斌, 朱子才, 等. 4D打印: 智能材料与结构增材制造技术的研究进展[J]. 西安交通大学学报, 2018, 52(2): 1-12.
Chen H L, Luo B, Zhu Z C, et al. 4D Printing-progress in additive manufacturing technology and application of smart materials and structure [J]. Journal of Xi an Jiaotong University, 2018, 52(2): 1-12.
2 李昂, 刘雪峰, 俞波, 等. 金属增材制造技术的关键因素及发展方向[J]. 工程科学学报, 2019, 41(2): 20-34.
Li A, Liu X F, Yu B, et al. Key factors and developmental directions with regard to metal additive manufacturing [J]. Chinese Journal of Engineering, 2019, 41(2): 20-34.
3 周长平, 林枫, 杨浩, 等. 增材制造技术在船舶制造领域的应用进展[J]. 船舶工程, 2017, (2): 86-93.
Zhou C P, Lin F, Yang H, et al. Application progress of additive manufacturing technology in shipbuilding field [J]. Ship Engineering, 2017, (2): 86-93.
4 沈理达, 田宗军, 谢德巧, 等. 金属离子液束流增材制造研究现状及其发展[J]. 航空制造技术, 2018, 61(17): 28-35.
Shen L D, Tian Z J, Xie D Q, et al. Research status and development in ionic liquid beam additive manufacturing [J]. Aeronautical Manufacturing Technology, 2018, 61(17): 28-35.
5 李权, 王福德, 王国庆, 等. 航空航天轻质金属材料电弧熔丝增材制造技术[J]. 航空制造技术, 2018, 61(3): 74-82.
Li Q, Wang F D, Wang G Q, et al. Wire and arc additive manufacturing of lightweight metal components in aeronautics and astronautics [J]. Aeronautical Manufacturing Technology, 2018, 61(3): 74-82.
6 Rawal S, Brantley J, Karabudak N. Additive manufacturing of Ti-6Al-4V alloy components for spacecraft applications [C]// International Conference on Recent Advances in Space Technologies. 2013.
7 Onzalez-G J, Cano S, Schuschnigg S, et al. Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: a review and future perspectives [J]. Materials, 2018, 11(5): 840.
8 刘亦飞, 李亮, 王功, 等. 空间金属增材制造技术应用[J]. 空间科学学报, 2018, 38(3): 380-385.
Liu Y F, Li L, Wang G, et al. Application of metal additive manufacturing technology for space [J]. Chinese Journal of Space Science, 2018, 38(3): 380-385.
9 Rehnmark F, Pryor M, Holmes B, et al. Development of a deployable nonmetallic boom for reconfigurable systems of small spacecraft [C]// AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, & Materials Conference. 2007.
10 Savi P. High speed digital lines routed on non-metallic spacecraft structures [C]// International Symposium on Electromagnetic Compatibility. 2014.
11 Schumacher C, Bickel B, Rys J, et al. Microstructures to control elasticity in 3D printing [J]. ACM Trans. Graph., 2015, 34(4): 136.
12 Alex E. Notes on Extraterrestrial applications of 3D-printing with regard to self-replicating machines [C]// 2015 IEEE International Conference on Automation Science and Engineering (CASE). Gothenburg, Sweden, 2015: 930-935.
13 Hwang S, Reyes E I, Moon K, et al. Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process [J]. Journal of Electronic Materials, 2015, 44(3): 771-777.
14 Zhang T, Miyamoto C M. 3D printing: a cost effective and timely approach to manufacturing of low-thrust engines [C]// Propulsion and Energy Forum, 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.2014: 1178-1200.
15 Mallory M J, Mary J W, Kenneth G C. 3D printing in zero-G ISS technology demonstration [C]// AIAA SPACE Conference and Exposition. 2014: 2054-2058.
16 姜月娟, 卢秉恒, 方学伟, 等. 基于3D打印的网络化集散制造模式研究[J]. 计算机集成制造技术, 2016, 22(6): 1424-1433.
Jiang Y J, Lu B H, Fang X W, et al. 3D printing based on internet collect manufacturing mode [J]. Computer Integrated Manufacturing System, 2016, 22(6): 1424-1433.
17 Du J, Wang X, Bai H, et al. Numerical analysis of fused-coating metal additive manufacturing [J]. International Journal of Thermal Sciences, 2017, 114: 342-351.
18 Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms [J]. International Materials Reviews, 2013, 57(3): 133-164.
19 张颖一, 张伟, 王功. 太空增材制造的技术需求和应用模式探索[J]. 中国材料进展, 2017, 36(7): 503-511.
Zhang Y Y, Zhang W, Wang G. Discussion on the technical demands and application modes of additive manufacturing in space [J]. Materials China, 2017, 36(7): 503-511.
20 Kim Y, Lee J, Oh J H. Fabrication of fine metal patterns using an additive material extrusion process with a molten metal [J]. Microelectronic Engineering, 2018, 191: 10-15.
21 吴伟伟, 黄筱调, 方成刚, 等. 水泥3D打印喷头内浆体流动的MRT-LBM分析[J]. 南京工业大学学报, 2018, 40(5): 79-84.
Wu W W, Huang X D, Fang C G, et al. Multiple-relaxation-time lattice Boltzmann method analyses for paste flow in cement-3D printing extruder [J]. Journal of Nanjing Tech University, 2018, 40(5): 79-84.
22 Zhou X, Zhang H, Wang G, et al. Three-dimensional numerical simulation of arc and metal transport in arc welding based additive manufacturing [J]. International Journal of Heat & Mass Transfer, 2016, 103: 521-537.
23 Lissianski V V, Zamansky V M, Maly P M. Effect of metal-containing additives on NOx reduction in combustion and reburning [J]. Combustion & Flame, 2001, 125(3): 1118-1127.
24 Handley D, Heggs P J. The effect of thermal conductivity of the packing material on transient heat transfer in a fixed bed [J]. International Journal of Heat & Mass Transfer, 1969, 12(5): 549-570.
25 Sateesh N H, Mohankumar G C, Krishna P. Effect of heat treatment on coated ceramics for composite formation by laser processing [J]. International Journal of Advances in Engineering Sciences, 2014, 4(4): 14-18.
26 Daryabeigi K. Thermal analysis and design optimization of multilayer insulation for reentry aerodynamic heating [J]. Journal of Spacecraft and Rockets, 2002, 39(4): 509-514.
27 付桂翠, 王香芬, 姜同敏. 高可靠性航空电子设备热分析中的有限体积法[J]. 北京航空航天大学学报, 2006, 32(6), 716-720.
Fu G C, Wang X F, Jiang T M. Finite volume method in thermal analysis of avionics [J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(6): 716-720.
28 Bernard N, Egbert B. Recent applications and future development trends in electromagnetic processing of metals and non-metallic materials [J]. Journal of Iron and Steel Research (International), 2012, (S1): 50-54.
29 Yu H Z, Jones M E, Brady G W, et al. Non-beam-based metal additive manufacturing enabled by additive friction stir deposition [J]. Scripta Materialia, 2018, 153: 122-130.
30 Campoli G, Borleffs M S, Yavari S A, et al. Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing [J]. Materials & Design, 2013, 49: 957-965.
31 Shehatta I. Cyclodextrins as enhancers of the aqueous solubility of the anthelmintic drug mebendazole: thermodynamic considerations [J]. Monatshefte Für Chemie, 2002, 133(9): 1239-1247.
32 Gonzalez G J, Cano S, Schuschnigg S, et al. Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: a review and future perspectives [J]. Materials, 2018, 840(11): 1-36.
[1] 裴后举, 蒋彦龙, 施红, 崔永龙, 陈常栋, 钱晓辉. 基于M-L湍流模型的浮空器强迫对流换热[J]. 化工学报, 2020, 71(S1): 136-141.
[2] 王晨, 折晓会, 张小松. 含空气净化过程的液态空气储能热力学研究[J]. 化工学报, 2020, 71(S1): 23-30.
[3] 齐玢, 段希希, 阿嵘, 江泓升. 载人航天器环热控一体化仿真分析[J]. 化工学报, 2020, 71(S1): 300-306.
[4] 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321.
[5] 孟繁鑫, 孙佳宁, 周月, 高赞军, 程定斌. 飞机环控系统空气循环机仿真建模及试验校核[J]. 化工学报, 2020, 71(S1): 328-334.
[6] 徐刚, 庞丽萍. 特种车辆舱室送风系统布局仿真优化[J]. 化工学报, 2020, 71(S1): 335-340.
[7] 周月, 张鹤林, 程定斌, 尹俊成. 典型空气循环制冷系统仿真研究[J]. 化工学报, 2020, 71(S1): 341-345.
[8] 郭良, 李恒, 庞丽萍, 毛晓东, 赵竞全, 杨晓东. 高速运载器发电/制冷联合系统稳态性能[J]. 化工学报, 2020, 71(S1): 391-396.
[9] 郭栋才, 盛强, 杨鹏, 徐捷, 王泽, 杨波, 曹娇坤. 基于热电效应的高效环控系统[J]. 化工学报, 2020, 71(S1): 404-410.
[10] 杨晓东, 庞丽萍, 阿嵘, 金亮. 高速飞行器燃油热管理系统飞行热航时[J]. 化工学报, 2020, 71(S1): 425-429.
[11] 张洁, 庞丽萍, 曲洪权, 王天博. 基于随机配置网络的机载电子吊舱多工况热模型[J]. 化工学报, 2020, 71(S1): 441-447.
[12] 李攀, 孔慧, 宋卓栋, 张作毅, 王云芳. 甲醇-甲醛-聚甲氧基二甲醚三元体系汽液平衡[J]. 化工学报, 2020, 71(S1): 7-14.
[13] 谭畯坤, 刘玉东, 耿世超, 陈兵, 童明伟. 真空探针冷冻和复温性能实验测试及数值模拟[J]. 化工学报, 2020, 71(4): 1440-1449.
[14] 赵文英, 李文文, 孙晓岩, 曹晓荣, 项曙光. 基于PR立方型状态方程普遍化温度函数的研究与评价[J]. 化工学报, 2020, 71(3): 1234-1245.
[15] 潘帅, 纪常伟, 汪硕峰, 王兵, 孙洁洁, 戚朋飞. 废旧三元动力电池电热特性的实验研究[J]. 化工学报, 2020, 71(3): 1297-1309.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .