化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 425-429.doi: 10.11949/0438-1157.20191117

• 能源和环境工程 • 上一篇    下一篇

高速飞行器燃油热管理系统飞行热航时

杨晓东1(),庞丽萍2(),阿嵘3,金亮1   

  1. 1.北京空天技术研究所,北京 100074
    2.北京航空航天大学航空科学与工程学院,北京 100191
    3.中国空间技术研究院载人航天总体部,北京 100094
  • 收稿日期:2019-10-07 修回日期:2019-11-13 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 庞丽萍 E-mail:yang123931@163.com;pangliping@buaa.edu.cn
  • 作者简介:杨晓东(1987—),男,博士,高级工程师, yang123931@163.com

Thermal flight time of fuel heat management system for high speed vehicle

Xiaodong YANG1(),Liping PANG2(),Rong A3,Liang JIN1   

  1. 1.Beijing Aerospace Technology Institute, Beijing 100074, China
    2.School of Aviation Science and Engineering, Beihang University (BUAA), Beijing 100191, China
    3.Institute of Manned Space System Engineering, China Academy of Space Technology, Beijing 100094, China
  • Received:2019-10-07 Revised:2019-11-13 Online:2020-04-25 Published:2020-05-22
  • Contact: Liping PANG E-mail:yang123931@163.com;pangliping@buaa.edu.cn

摘要:

目前高速飞行器机载热负荷呈指数上升趋势,而由于气动加热作用,机身温度随航时增长也持续上升,这两者严重限制了高速飞行器的续航时间和电子设备的使用时长。燃油作为飞行器所必须携带的大比热容液体工质,是机载热沉的优选。燃油热沉利用会受气动加热、耗油量、飞行时长的综合影响。本文以机载燃油热沉为核心,研究高速飞行器燃油热管理系统参数设计对飞行热航时的影响。建立了燃油-消耗性冷却剂热利用系统的动态特性方程,并提出热航时的概念以衡量热负荷作用下燃油不发生超温的飞行时长,详细讨论了上述各影响因素与热利用系统参数对热航时的影响。上述研究可为高速飞行器热管理系统设计选型提供参考。

关键词: 高速飞行器, 热管理系统, 燃油热沉, 热传导, 相变, 热力学过程

Abstract:

At present, the airborne thermal load of high speed vehicle is increasing exponentially. But the temperature of the fuselage increases with the flight time due to the aerodynamic heating effect. These factors severely restrict the endurance of the high-speed vehicle and the working time of the electronic equipment. Fuel oil can be the preferred airborne heat sink because it is necessary to be carried liquid with large ratio heat capacity. The working temperature of fuel heat sink will be affected aerodynamic heating effect, consumption rate, flight time, comprehensively. In this paper, a fuel heat management system for high speed vehicle will be studied to analyze the influence of parameters design on the flight time. The dynamic characteristic equations were established for the fuel thermal management system. The concept of thermal fight time was further proposed to evaluate the flight time constrained by thermal load effect. The effects of the above factors and the design parameters on the fuel thermal management system were discussed in detail. The above work can provide a reference for the design and selection of the thermal management system for high speed vehicle.

Key words: high speed aircraft, heat management system, fuel heat sink, heat conduction, phase change, thermodynamics process

中图分类号: 

  • V 245.3

图1

高速飞行器燃油热管理系统架构"

表1

分析变量表"

符号变量单位
Ecv储存能J
Q˙a气动加热量W
Q˙1油箱流入控制体的能量W
Q˙h机载热源发热量W
Q˙d供给发动机能量W
Q˙c,max蒸发器最大换热量W
m˙1油箱出口燃油质量流量kg·s-1
Te附面层温度K
T1油箱出口温度K
Ua附面层空气与燃油总传热系数W·m-2·K-1
cp比定压热容J·kg-1·K-1
Q˙r循环回路入控制体能量W
Q˙2油箱流出控制体的能量W
Q˙3进入消耗冷却剂换热器能量W
εc效能
m˙r循环回路燃油质量流量kg·s-1
Tref任意参考温度K
T燃油箱温度K
Tlim发动机油温限K
Aa油箱内壁瞬时润湿面积m2

图2

设计航时与初始燃油携带量的关系"

图3

初始燃油携带量与热航时关系"

图4

循环回路燃油流量限对热航时的影响"

图5

燃油流量限的影响(τthermal=τdesign)"

1 Mahefkey T, Yerkes K, Donovan B, et al. Thermal management challenges for future military aircraft power systems [C]// SAE Transactions, 2004, 113: 1965-1973.
2 Maiorano L P, Molina J M. Challenging thermal management by incorporation of graphite into aluminium foams [J]. Materials & Design, 2018, 158: 160-171.
3 Iqbal M A, Macha N K, Danesh W, et al. Thermal management challenges and mitigation techniques for transistor-level 3-D integration [J]. Microelectronics Journal, 2019, 91: 61-69.
4 Jeffrey F, Philip O, Michael G, et al. Challenges and opportunities for electric aircraft thermal management [J]. Aircraft Engineering & Aerospace Technology, 2014, 86(6): 519-524.
5 Yu S, Ganev E. Next generation power and thermal management system [J]. SAE International Journal of Aerospace, 2009, 1(1): 1107-1121.
6 Fjelstad J. Beating the heat: a review of thermal management challenges [J]. Surface Mount Technology, 2013, 28(7): 46-50.
7 David B D. Optimal cruise altitude for aircraft thermal management [J] Journal of Guidance Control and Dynamics, 2015, 38(11): 2084-2095.
8 Howard C E. Thermal management a challenge for designers of future military aircraft [J]. Military and Aerospace Electronics, 2008, 19(4): 12.
9 Moore A L, Shi L. Emerging challenges and materials for thermal management of electronics (review) [J]. Materials Today, 2014, 17(4): 163-174.
10 Yu X, Mao Y. Research and simulation of hypersonic aircraft thermal management system and its control model [J]. Journal of Aerospace Power, 2018, 33(3): 741-751.
11 Phillips E H. Langley develops thermal management concept for hypersonic aircraft [J]. Aviation Week and Space Technology, 1991, 134(15): 41.
12 张斌. 民用飞机燃油箱系统热模型分析研究[J]. 民用飞机设计与研究, 2013, (1): 23-26.
Zhang B. Research on the thermal model analysis of civil aircraft fuel tank system [J]. Civil Aircraft Design and Research, 2013, (1): 23-26.
13 吕亚国, 任国哲, 刘振侠, 等. 飞机燃油箱热分析研究[J]. 推进技术, 2015, (1): 61-67.
Lü Y G, Ren G Z, Liu Z X, et al. Thermal analysis of fuel tank for aircraft [J]. Journal of Propulsion Technology, 2015, (1): 61-67.
14 李艳军, 朱福民. 液压油箱模型散热性能的研究[J]. 科技信息, 2014, (9): 42-43.
Li Y J, Zhu F M. Study on heat dissipation performance of hydraulic oil tank model [J]. Science & Technology Information, 2014, (9): 42-43
15 Dechow M, Nurcombe C A H. Aircraft environmental control systems [J]. The Handbook of Environmental Chemistry, 2005, 4(1): 3-24.
16 Yang Y C, Gao Z C. Power optimization of the environmental control system for the civil more electric aircraft [J]. Energy, 2019, 172: 196-206.
17 Yi C. Study on the simulink model for the testbed of the environmental control system of the aircraft [J]. Journal of Physics: Conference Series, 2018, 1060(1): 012073.
18 Chen L, Zhang X, Wang C, et al. A novel environmental control system facilitating humidification for commercial aircraft [J]. Building and Environment, 2017, 126: 34-41.
19 Kyle A P, William T H, Lu H, et al. Built-in test design for fault detection and isolation in an aircraft environmental control system [J]. IFAC PapersOnLine, 2016, 49(7): 7-12.
20 Bender D. Integration of exergy analysis into model-based design and evaluation of aircraft environmental control systems [J]. Energy, 2017, 137: 739-751.
21 Yin H, Shen X, Huang Y, et al. Modeling dynamic responses of aircraft environmental control systems by coupling with cabin thermal environment simulations [J]. Building Simulation, 2016, 9(4): 459-468.
22 Teresa J L, Isabel P G. A thermoeconomic analysis of a commercial aircraft environmental control system [J]. Applied Thermal Engineering, 2005, 25(2/3): 309-325.
23 于喜奎, 毛羽丰. 高超声速飞机热管理系统控制模型构建与仿真[J]. 航空动力学报, 2018, 33(3): 741-751.
Yu X K, Mao Y F. Research and simulation of hypersonic aircraft thermal management system and its control model [J]. Journal of Aerospace Power, 2018, 33(3): 741-751.
24 兰江, 朱磊, 赵竞全. 通用油箱热模型的建模与仿真[J]. 航空动力学报, 2014, 29(7): 1623-1631.
Lan J, Zhu L, Zhao J Q. Modeling and simulation of general fuel tank thermal model [J]. Journal of Aerospace Power, 2014, 29(7): 1623-1631.
25 郝毓雅, 王婕. 飞机燃油热管理系统分析[J]. 现代机械, 2015, (3): 77-82.
Hao Y Y, Wang J. The analysis of aircraft fuel thermal management system [J]. Modern Machinery, 2015, (3): 77-82.
26 Anderson J D. Aircraft Performance and Design [M]. New York: McGraw-Hill Education, 1999.
27 雷屹坤. 飞机综合一体化热/能量管理系统方案研究[D]. 南京: 南京航空航天大学, 2014.
Lei Y K. Research on scheme of integrated thermal and energy management system on aircraft [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014
28 袁美名, 常士楠, 洪海华, 等. 飞机机载综合热管理系统仿真研究[J]. 航空科学技术, 2008, (4): 30-34.
Yuan M M, Chang S N, Hong H H, et al. Simulation of aircraft integrated thermal management system [J]. Aeronautical Science and Technology, 2008, (4): 30-34.
29 王文龙, 王伟. 下一代战斗机综合环境控制/热管理系统开发现状[J]. 飞机设计, 2004, (1): 74-76.
Wang W L, Wang W. Development of integrated environmental control system/thermal management system (IECS/TMS) for next generation fighter aircraft [J]. Aircraft Design, 2004, (1): 74-76.
30 陈悦. 飞机燃油系统热负荷计算及热管理分析[D]. 南京: 南京航空航天大学, 2014.
Chen Y. Heat sink calculation and the analysis of thermal management for aircraft fuel system [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014.
[1] 裴后举, 蒋彦龙, 施红, 崔永龙, 陈常栋, 钱晓辉. 基于M-L湍流模型的浮空器强迫对流换热[J]. 化工学报, 2020, 71(S1): 136-141.
[2] 田东民, 吴延鹏, 陈凤君. 基于纳米增强相变材料的铜-水热管传热性能分析[J]. 化工学报, 2020, 71(S1): 220-226.
[3] 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321.
[4] 张晨宇, 王宁, 徐洪涛, 张剑飞, 曹萌. 基于相变材料的太阳能PV/T系统性能[J]. 化工学报, 2020, 71(S1): 361-367.
[5] 王彬, 杨瑞生, 郑卫东, 周芮, 张小斌. 运载火箭共底贮箱加注过程非稳态温度分布数值模拟[J]. 化工学报, 2020, 71(S1): 68-76.
[6] 于泽沛, 冯妍卉, 冯黛丽, 张欣欣. 三维石墨烯-碳纳米管复合结构热导率的分子动力学模拟[J]. 化工学报, 2020, 71(4): 1822-1827.
[7] 白志蕊, 徐洪涛, 屈治国, 张剑飞, 苗玉波. 相变套管式储热系统放冷性能实验研究[J]. 化工学报, 2020, 71(4): 1580-1587.
[8] 吴兴辉, 杨震, 陈颖, 段远源. 基于离散相模型的相变微胶囊流体传热特性数值模拟[J]. 化工学报, 2020, 71(4): 1491-1501.
[9] 王志奇, 贺妮, 罗兰, 夏小霞, 左青松. 水平管内R245fa/R141b沸腾换热特性的实验研究[J]. 化工学报, 2020, 71(4): 1588-1596.
[10] 王乐乐, 戴源德, 田思瑶, 林秦汉. R290在小管径水平微肋管内沸腾传热的实验研究[J]. 化工学报, 2020, 71(3): 1026-1034.
[11] 蒋新生, 张霖, 何东海, 胡文超, 刘鲁兴, 赵亚东. 航空煤油不同尺寸池火热流及温度特性研究[J]. 化工学报, 2020, 71(3): 1398-1408.
[12] 马奕新, 金宇, 张虎, 王娴, 唐桂华. 翅片重力热管传热性能实验研究[J]. 化工学报, 2020, 71(2): 594-601.
[13] 杨生, 邵雪峰, 范利武. 面向中温储热的D-半乳糖醇/肌糖醇二元共晶相变材料热稳定性研究[J]. 化工学报, 2020, 71(2): 864-870.
[14] 尹应德, 朱冬生, 刘世杰, 叶周, 王飞扬. 双缸滚动转子式压缩机采暖热泵低温制热性能[J]. 化工学报, 2019, 70(S2): 220-227.
[15] 徐阳, 郑章靖, 李明佳. 管壳式相变储热器性能快速预测研究[J]. 化工学报, 2019, 70(S2): 237-243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .