化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1822-1827.doi: 10.11949/0438-1157.20191110

• 材料化学工程与纳米技术 • 上一篇    下一篇

三维石墨烯-碳纳米管复合结构热导率的分子动力学模拟

于泽沛1(),冯妍卉1,2(),冯黛丽1,2,张欣欣1,2   

  1. 1.北京科技大学能源与环境工程学院,北京 100083
    2.北京科技大学冶金工业节能减排北京市重点实验室,北京 100083
  • 收稿日期:2019-10-07 修回日期:2019-12-16 出版日期:2020-04-05 发布日期:2019-12-27
  • 通讯作者: 冯妍卉 E-mail:zepeiyu@qq.com;yhfeng@me.ustb.edu.cn
  • 作者简介:于泽沛(1992—),男,博士研究生,zepeiyu@qq.com
  • 基金资助:
    国家自然科学基金项目(51436001);北京市自然科学基金项目(3192022);中央高校基本科研业务(FRF-TP-19-007B1)

Thermal conductivity of three dimensional graphene-carbon nanotubes hybrid structure: molecular dynamics simulation

Zepei YU1(),Yanhui FENG1,2(),Daili FENG1,2,Xinxin ZHANG1,2   

  1. 1.School of Energy and Environmental Engineering, University of Science and Technology, Beijing Beijing 100083, China
    2.Beijing Key Laboratory of Energy Conservation and Emission Reduction in Metallurgical Industry, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2019-10-07 Revised:2019-12-16 Online:2020-04-05 Published:2019-12-27
  • Contact: Yanhui FENG E-mail:zepeiyu@qq.com;yhfeng@me.ustb.edu.cn

摘要:

采用非平衡分子动力学方法模拟了三维石墨烯-碳纳米管复合结构的法向热导率。结果表明相比于多层石墨烯,其法向热导率提高了一个量级,其界面热阻相比碳纳米管的接触热阻降低了一个量级,但是石墨烯和碳纳米管的界面形变又阻碍了三维石墨烯-碳纳米管复合热导率的进一步提高。通过其振动态密度和重叠能进一步探究了三维石墨烯-碳纳米管复合结构结构能量的传递及声子的局域化情况。结果表明,碳管的添加激发了更多中高频声子振动参与传热,但是依然是低频声子占据主导;验证了界面处的形变是阻止法向热导率进一步提升的主要因素。

关键词: 纳米结构, 复合材料, 热传导, 分子动力学, 振动态密度

Abstract:

The non-equilibrium molecular dynamics method was used to simulate the normal thermal conductivity of the three-dimensional graphene-carbon nanotube composite structure. The structure is based on multi-layer graphene, and the graphene layers are connected with each other through nanotubes. In this way, it is expected to have both low contact thermal resistance and high normal thermal conductivity. In this paper, the out-of-plane thermal conductivity of 3D GCHs is simulated by non-equilibrium molecular dynamics method. The results show that the out-of-plane thermal conductivity increases by one order of magnitude compared with that of multi-layer graphene, and the interface resistance decreases by one order of magnitude in comparison with thermal contact resistance of CNTs. However, the interface between graphene and CNT hinders the heat transfer of GCHs enhancing further. The heat transfer and phonon localization of the GCHs are further investigated through its phonon vibrational density of states and overlap energy. The results show that the addition of carbon nanotubes stimulates more medium and high frequency phonons to participate in heat transfer, but the low frequency phonons still dominate. It is verified that the deformation at the interface is the main factor to prevent the out-of-plane thermal conductivity from further increasing. This paper provides some directional guidance for the improvement and development of high thermal conductivity materials: in the three-dimensional structure of the same element, the fewer types of structural atoms, the better the coordination of inter-atomic vibration, the fewer phonon scattering, the lower the degree of energy localization, and the higher the thermal conductivity

Key words: nano structure, composite material, thermal conductivity, molecular dynamics, vibrational density of states

中图分类号: 

  • TK 12

图1

GCHs单晶胞及其3晶胞结构"

图2

单晶胞GCHs (a)和3晶胞GCHs(b)的温度分布图(300 K)"

图3

GCHs及多层石墨烯的归一化振动态密度(300 K)"

图4

GCHs不同频率段声子对热导率的贡献(300 K)"

图5

GCHs不同区域不同频率段的重叠能"

1 Feng D, Feng Y, Qiu L, et al. Review on nanoporous composite phase change materials: fabrication, characterization, enhancement and molecular simulation[J]. Renewable and Sustainable Energy Reviews, 2019, 109: 578-605.
2 Sinha-Ray S, Sahu R P, Yarin A L. Nano-encapsulated smart tunable phase change materials[J]. Soft Matter, 2011, 7(19): 8823-8827.
3 Xu Q, Feng J, Zhang S. Combined effects of different temperature and pressure loads on the “L”-type large-diameter buried pipeline[J]. International Journal of Heat and Mass Transfer, 2017, 111: 953-961.
4 Feng D, Feng Y, Zang Y, et al. Phase change in modified metal organic frameworks MIL-101 (Cr): mechanism on highly improved energy storage performance[J]. Microporous and Mesoporous Materials, 2019, 280: 124-132.
5 Chen J, Zhang G, Li B. How to improve the accuracy of equilibrium molecular dynamics for computation of thermal conductivity?[J]. Physics Letters A, 2010, 374(23): 2392-2396.
6 Jiang F, Zhang L, Jiang Z, et al. Diatomite-based porous ceramics with high apparent porosity: pore structure modification using calcium carbonate[J]. Ceramics International, 2019, 45(5): 6085-6092.
7 Xu Q, Feng J, Zhang S. Influence of end side displacement load on stress and deformation of “L”-type large-diameter buried pipe network[J]. Applied Thermal Engineering, 2017, 126: 245-254.
8 Jiang F, Li Y, Zhao L, et al. Novel ceramics prepared from inferior clay rich in CaO and Fe2O3: properties, crystalline phases evolution and densification process[J]. Applied Clay Science, 2017, 143: 199-204.
9 Xu Q, Feng J. Analysis of nozzle gas speed on the performance of the zoned and staged gas-fired radiant tube[J]. Applied Thermal Engineering, 2017, 118: 734-741.
10 Jiang F, Zhang L, Mukiza E, et al. Formation mechanism of high apparent porosity ceramics prepared from fly ash cenosphere[J]. Journal of Alloys and Compounds, 2018, 749: 750-757.
11 Jiang F, Zhang L, She X, et al. Skeleton materials for shape-stabilization of high temperature salts based phase change materials: a critical review[J]. Renewable and Sustainable Energy Reviews, 2019: 109539.
12 Tang J, Yang M, Dong W, et al. Highly porous carbons derived from MOFs for shape-stabilized phase change materials with high storage capacity and thermal conductivity[J]. RSC Advances, 2016, 6(46): 40106-40114.
13 Cui L, Feng Y, Zhang X. Enhancement of heat conduction in carbon nanotubes filled with fullerene molecules[J]. Physical Chemistry Chemical Physics, 2015, 17(41): 27520-27526.
14 Liu B, Baimova J A, Reddy C D, et al. Interface thermal conductance and rectification in hybrid graphene/silicene monolayer[J]. Carbon, 2014, 79: 236-244.
15 Mortazavi B, Ahzi S. Thermal conductivity and tensile response of defective graphene: a molecular dynamics study[J]. Carbon, 2013, 63: 460-470.
16 Dimitrakakis G K, Tylianakis E, Froudakis G E. Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage[J]. Nano Letters, 2008, 8(10): 3166-3170.
17 Fan Z, Yan J, Zhi L, et al. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors[J]. Advanced Materials, 2010, 22(33): 3723-3728.
18 Dong X, Chen J, Ma Y, et al. Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water[J]. Chemical Communications, 2012, 48(86): 10660-10662.
19 Lee J, Varshney V, Brown J S, et al. Single mode phonon scattering at carbon nanotube-graphene junction in pillared graphene structure[J]. Applied Physics Letters, 2012, 100(18): 183111.
20 Park J, Prakash V. Thermal transport in 3D pillared SWCNT-graphene nanostructures[J]. Journal of Materials Research, 2013, 28(7): 940-951.
21 Jha N, Ramesh P, Bekyarova E, et al. High energy density supercapacitor based on a hybrid carbon nanotube–reduced graphite oxide architecture[J]. Advanced Energy Materials, 2012, 2(4): 438-444.
22 Zhao M Q, Liu X F, Zhang Q, et al. Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li-S batteries[J]. ACS Nano, 2012, 6(12): 10759-10769.
23 Dongmei Z, Zhenwei L, Lingdi L, et al. Progress of preparation and application of graphene/carbon nanotube composite materials[J]. Acta Chimica Sinica, 2014, 72(2): 185-200.
24 Loh G C, Teo E H T, Tay B K. Tuning the Kapitza resistance in pillared-graphene nanostructures[J]. Journal of Applied Physics, 2012, 111(1): 013515.
25 Loh G C, Teo E H T, Tay B K. Interpillar phononics in pillared-graphene hybrid nanostructures[J]. Journal of Applied Physics, 2011, 110(8): 083502.
26 Kamaliya R, Singh B P, Gupta B K, et al. Large scale production of three dimensional carbon nanotube pillared graphene network for bi-functional optical properties[J]. Carbon, 2014, 78: 147-155.
27 Zhang Z, Kutana A, Roy A, et al. Nanochimneys: topology and thermal conductance of 3D nanotube-graphene cone junctions[J]. The Journal of Physical Chemistry C, 2017, 121(2): 1257-1262.
28 Thiyagarajan P, Oh M W, Yoon J C, et al. Thermoelectric properties of nanoporous three-dimensional graphene networks[J]. Applied Physics Letters, 2014, 105(3): 033905.
29 Tersoff J. Modeling solid-state chemistry: interatomic potentials for multicomponent systems[J]. Physical Review B, 1989, 39(8): 5566.
30 Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19.
31 Liu Y, Feng Y, Huang Z, et al. Thermal conductivity of 3D boron-based covalent organic frameworks from molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2016, 120(30): 17060-17068.
32 Zhang J, Feng Y, Yuan H, et al. Thermal properties of C17H36/MCM-41 composite phase change materials[J]. Computational Materials Science, 2015, 109: 300-307.
33 Tretiakov K V, Scandolo S. Thermal conductivity of solid argon at high pressure and high temperature: a molecular dynamics study[J]. The Journal of Chemical Physics, 2004, 121(22): 11177-11182.
34 Zhong H, Lukes J R. Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling[J]. Physical Review B, 2006, 74(12): 125403.
35 Loong C K, Vashishta P, Kalia R K, et al. Phonon density of states and oxygen-isotope effect in Ba1-xKxBiO3[J]. Physical Review B, 1992, 45(14): 8052.
36 Zhang X, Jiang J. Thermal conductivity of zeolitic imidazolate framework-8: a molecular simulation study[J]. The Journal of Physical Chemistry C, 2013, 117(36): 18441-18447.
37 Amirjalayer S, Snurr R Q, Schmid R. Prediction of structure and properties of boron-based covalent organic frameworks by a first-principles derived force field[J]. The Journal of Physical Chemistry C, 2012, 116(7): 4921-4929.
[1] 白志蕊, 徐洪涛, 屈治国, 张剑飞, 苗玉波. 相变套管式储热系统放冷性能实验研究[J]. 化工学报, 2020, 71(4): 1580-1587.
[2] 郭华超, 杨波, 黄国家, 徐青永, 李爽, 伍振凌. 聚偏氟乙烯/石墨烯复合材料的制备及性能研究[J]. 化工学报, 2020, 71(4): 1881-1888.
[3] 刘明, 徐哲. 甲烷水合物声子导热及量子修正[J]. 化工学报, 2020, 71(4): 1424-1431.
[4] 杨鑫宇, 吴杰, 张建庭, 吴纯鑫, 赵德明. 功能化磁性纳米复合材料Fe3O4-mPD/SP吸附Cr(Ⅵ)研究[J]. 化工学报, 2020, 71(3): 1060-1071.
[5] 蒋新生, 张霖, 何东海, 胡文超, 刘鲁兴, 赵亚东. 航空煤油不同尺寸池火热流及温度特性研究[J]. 化工学报, 2020, 71(3): 1398-1408.
[6] 孙明慧, 陈静圆, 肖南, 陈奥博, 王旭珍, 邱介山. 煤基富氮层级多孔碳制备及其催化脱硫性能[J]. 化工学报, 2020, 71(2): 660-668.
[7] 周梦迪, 沈嘉炜, 梁立军, 李嘉辰, 金乐红, 王琦. 石墨烯生物毒性的计算机模拟研究进展[J]. 化工学报, 2020, 71(1): 148-165.
[8] 李莹莹, 邓谦谦, 刘浩, 刘其春, 顾正桂, 王昉. 新型丝素复合膜的微结构表征及热稳定性[J]. 化工学报, 2020, 71(1): 388-396.
[9] 潘海华, 唐睿康. 生物矿化及仿生矿化中的信息传递和转化[J]. 化工学报, 2020, 71(1): 68-80.
[10] 邹瀚影,冯妍卉,邱琳,张欣欣. 十八烷酸热传导机制的尺度效应研究[J]. 化工学报, 2019, 70(S2): 155-160.
[11] 王甜蜜,唐桂华. Janus三角纳米片和“三明治”三角纳米片消光特性的数值研究[J]. 化工学报, 2019, 70(S2): 336-342.
[12] 闫秋会,孙晓阳,罗杰任,吴志菊. 玻璃棉/SiO2气凝胶复合板的改性研究[J]. 化工学报, 2019, 70(S2): 363-368.
[13] 张中印,袁诚阳,樊轩辉,祝捷,赵佳飞,唐大伟. 基于TDTR技术水合物热导率测量方法[J]. 化工学报, 2019, 70(S2): 54-61.
[14] 于帆,张欣欣. 脉冲式平面热源法测量材料热导率和热扩散率的分析与实验[J]. 化工学报, 2019, 70(S2): 70-75.
[15] 侯德鑫,陈玥,叶树亮. 基于热成像的背胶石墨膜面向热导率测试方法[J]. 化工学报, 2019, 70(S2): 76-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[2] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[3] . 2013年 第64卷 第1期目 次[J]. 化工学报, 2013, 64(1): 0 .
[4] 赵德明, 李敏, 徐新华. 高分散型纳米级Pd/Fe对4-氯苯酚的还原脱氯[J]. 化工学报, 2013, 64(3): 1091 -1098 .
[5] 张弦, 罗才武, 黄登高, 李安, 刘娟娟, 晁自胜. 醛/氨反应合成吡啶碱机理[J]. 化工学报, 2013, 64(8): 2875 -2882 .
[6] 何大方, 吴健, 刘战剑, 沈丽明, 汪怀远, 暴宁钟. 面向应用的石墨烯制备研究进展[J]. 化工学报, 2015, 66(8): 2888 -2894 .
[7] 张沁丹, 付涛涛, 朱春英, 马友光. 十字聚焦型微通道内弹状液滴在黏弹性流体中的生成与尺寸预测[J]. 化工学报, 2016, 67(2): 504 -511 .
[8] 赵金龙, 黄弘, 李聪, 王建军. 基于事件链的罐区定量风险评估[J]. 化工学报, 2016, 67(7): 3084 -3090 .
[9] 陈振涛, 武云, 徐春明. 零长柱技术用于分子筛晶内扩散的研究进展[J]. 化工学报, 2016, 67(8): 3170 -3178 .
[10] 李振涛, 郝木明, 杨文静, 曹恒超, 任宝杰. 螺旋槽液膜密封端面空化发生机理[J]. 化工学报, 2016, 67(11): 4750 -4761 .