化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 136-141.doi: 10.11949/0438-1157.20191105
裴后举1(),蒋彦龙1(
),施红2,崔永龙1,陈常栋1,钱晓辉1
Houju PEI1(),Yanlong JIANG1(
),Hong SHI2,Yonglong CUI1,Changdong CHEN1,Xiaohui QIAN1
摘要:
外表面强迫对流换热是影响临近空间浮空器热控的重要因素,而流体的流动状态对强迫对流换热具有十分重要的影响。目前对浮空器外表面强迫对流换热的仿真研究多采用雷诺时均方程,将流动作为全湍流进行计算,且并未考虑转捩现象的影响。为了研究转捩现象对强迫对流换热的影响,首先通过在Reynolds数为1.14×106情况下采用M-L转捩模型球体浮空器绕流得到的结果与实验结果以及采用Shear Stress Transfer(SST)k-ω、k-ε模型模拟结果进行对比分析,验证了M-L转捩模型在模拟球体浮空器强迫对流换热时的优越性。在验证数值模拟方法的基础上,分析了Reynolds数对球体浮空器强迫对流换热的影响。基于数值模拟得到的结果,在Reynolds数为106~108的范围内,拟合得到了球体浮空器强迫对流换热关系式。
中图分类号:
1 | Anthony C, James D. Initial feasibility assessment of a high-altitude long endurance airship: report of National Aeronautics and Space Administration [R]. Ohio: NASA, 2003. |
2 | Lee M, Smith S, Androulakakis S. The high-altitude lighter than air airship efforts at the US Army Space and Missile Defense Command/Army Forces Strategic Command [C]//AIAA. 18th AIAA Lighter-than-air Systems Technology Conference. Seattle, Washington: American Institute of Aeronautics and Astronautics,2009: 1-26. |
3 | Ü Kunsel I, Ü Deniz. A low cost alternative for satellites-tethered ultra-high altitude balloons [C]// IEEE. Proceedings of 5th International Conference on Recent Advances in Space Technologies - RAST2011. Istanbal, Turkey: Institute of Electrical and Electronics Engineers, 2011: 13-16. |
4 | Santapietro J J. Persistent wide area surveillance from an airship [J]. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(6): 11-16. |
5 | Keim N, Samsundar J, Barton J. Senior design project: low-altitude unmanned reconnaissance airship (LAURA) [J]. Johns Hopkins Applied Technical Digest, 2010, 28(3): 276-277. |
6 | 王柏林, 杨加春, 郭虓. 基于平流层飞艇的气象探测技术探索[J]. 气象科技进展, 2019, 9(4): 6-13. |
Wang B L, Yang J C, Guo X. Study of meteorological observation technology based on stratospheric airship [J]. Advances in Meteorological Science and Technology, 2019, 9(4): 6-13. | |
7 | 彭桂林, 万志强. 中国浮空器遥感遥测应用现状与展望[J]. 地球信息科学学报, 2019, 21(4): 504-511. |
Peng G L, Wan Z Q. The present situation and prospect of aerostat applied to remote sensing and remote survey in China [J]. Journal of Geo-information Science, 2019, 21(4): 504-511. | |
8 | 武江涛, 麻震宇, 侯中喜, 等. 平流层飞艇强迫对流特性数值仿真分析[J]. 国防科技大学学报, 2016, 38(2): 177-182. |
Wu J T, Ma Z Y, Hou Z X, et al. Numerical research on forced convective heat transfer of stratospheric airship [J]. Journal of National University of Defense Technology, 2016, 38(2): 177-182. | |
9 | Vliet G C, Leppert G. Forced convection heat transfer from an isothermal sphere to water [J]. Journal of Heat Transfer, 1961, 83(2): 163-163. |
10 | Yao W, Lu X, Wang C, et al. A heat transient model for the thermal behavior prediction of stratospheric airships [J]. Applied Thermal Engineering, 2014, 70(1): 380-387. |
11 | Shi H, Geng S S, Qian X H, et al. Thermodynamics analysis of a stratospheric airship with hovering capability [J]. Applied Thermal Engineering, 2019, 146: 600-607. |
12 | Will J B, Kruyt N P, Venner C H. An experimental study of forced convective heat transfer from smooth, solid spheres [J]. International Journal of Heat & Mass Transfer, 2017, 109: 1059-1067. |
13 | Kreith F, Kreider J F. Numerical prediction of the performance of high-altitude balloons: report of NCAR [R]. Colorado: NCAR, 1974. |
14 | Carlson L A, Horn W J. New thermal and trajectory model for high-altitude balloons [J]. Journal of Aircraft, 1983, 20(6): 500-507. |
15 | 方贤德, 王伟志, 李小建. 平流层飞艇热仿真初步探讨[J]. 航天返回与遥感, 2007, 28(2): 5-9. |
Fang X D, Wang W Z, Li X J. A study of thermal simulation of stratospheric airships [J]. Spacecraft Recovery & Remote Sensing, 2007, 28(2): 5-9. | |
16 | Whitaker S. Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles [J]. AIChE Journal, 1972, 18(2): 361-371. |
17 | Dai Q M, Fang X D, Xu Y. Numerical study of forced convective heat transfer around a spherical aerostat [J]. Advances in Space Research, 2013, 52(12): 2199-2203. |
18 | Dai Q M, Fang X D. Numerical study of forced convective heat transfer around airships [J]. Advances in Space Research, 2016, 57(3): 776-781. |
19 | Li H, Rong L, Zong C, et al. A numerical study on forced convective heat transfer of a chicken (model) in horizontal airflow [J]. Biosystems Engineering, 2016, 150: 151-159. |
20 | Kishore N, Gu S. Momentum and heat transfer phenomena of spheroid particles at moderate Reynolds and Prandtl numbers [J]. International Journal of Heat and Mass Transfer, 2011, 54(11/12): 2595-2601. |
21 | Menter F R, Langtry R B, Likki S R, et al. A correlation based transition model using local variables part1-model formulation [C]// ASME Turbo Expo. Power for Land, Sea, and Air. Vienna, Austria: Proceedings of ASME Turbo Expo, 2004: 413-422. |
22 | Langtry R B, Menter F R, Likki S R, et al. A correlation-based transition model using local variables(Ⅱ): Test cases and industrial applications [J]. ASME J. Turbomach., 2006, 128(3): 423-434. |
23 | Amchenbach E. Experiments on the flow past spheres at very high Reynolds numbers [J]. Fluid Mech., 1972, 54(3): 565-575. |
[1] | 李攀, 孔慧, 宋卓栋, 张作毅, 王云芳. 甲醇-甲醛-聚甲氧基二甲醚三元体系汽液平衡[J]. 化工学报, 2020, 71(S1): 7-14. |
[2] | 王晨, 折晓会, 张小松. 含空气净化过程的液态空气储能热力学研究[J]. 化工学报, 2020, 71(S1): 23-30. |
[3] | 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321. |
[4] | 孟繁鑫, 孙佳宁, 周月, 高赞军, 程定斌. 飞机环控系统空气循环机仿真建模及试验校核[J]. 化工学报, 2020, 71(S1): 328-334. |
[5] | 郭良, 李恒, 庞丽萍, 毛晓东, 赵竞全, 杨晓东. 高速运载器发电/制冷联合系统稳态性能[J]. 化工学报, 2020, 71(S1): 391-396. |
[6] | 郭栋才, 盛强, 杨鹏, 徐捷, 王泽, 杨波, 曹娇坤. 基于热电效应的高效环控系统[J]. 化工学报, 2020, 71(S1): 404-410. |
[7] | 杨晓东, 庞丽萍, 阿嵘, 金亮. 高速飞行器燃油热管理系统飞行热航时[J]. 化工学报, 2020, 71(S1): 425-429. |
[8] | 张洁, 庞丽萍, 曲洪权, 王天博. 基于随机配置网络的机载电子吊舱多工况热模型[J]. 化工学报, 2020, 71(S1): 441-447. |
[9] | 杨东升, 阿嵘, 张建斌, 王大鹏, 张斌, 徐迎丽, 秦俊杰, 刘淑芬. 航天器舱内环境下非金属增材制造热效应分析[J]. 化工学报, 2020, 71(S1): 486-493. |
[10] | 谭畯坤, 刘玉东, 耿世超, 陈兵, 童明伟. 真空探针冷冻和复温性能实验测试及数值模拟[J]. 化工学报, 2020, 71(4): 1440-1449. |
[11] | 李济超, 季璨, 吕明明, 王静, 刘志刚, 李慧君. 微通道内单柱绕流特性的Micro-PIV实验研究[J]. 化工学报, 2020, 71(4): 1597-1608. |
[12] | 车健, 江锦波, 李纪云, 彭旭东, 马艺, 王玉明. 节流孔出气模式对静压干气密封稳态性能影响[J]. 化工学报, 2020, 71(4): 1734-1743. |
[13] | 孙宗康, 张笑丹, 杨林军, 陈帅, 吴新. 化学与湍流团聚耦合促进燃煤细颗粒物团聚与脱除[J]. 化工学报, 2020, 71(3): 1317-1325. |
[14] | 赵文英, 李文文, 孙晓岩, 曹晓荣, 项曙光. 基于PR立方型状态方程普遍化温度函数的研究与评价[J]. 化工学报, 2020, 71(3): 1234-1245. |
[15] | 董吉开, 杜文莉, 王冰, 许乔伊. 湍流状态下化学品扩散溯源中不同目标函数的影响分析[J]. 化工学报, 2020, 71(3): 1163-1173. |
|