化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 136-141.doi: 10.11949/0438-1157.20191105

• 流体力学与传递现象 • 上一篇    下一篇

基于M-L湍流模型的浮空器强迫对流换热

裴后举1(),蒋彦龙1(),施红2,崔永龙1,陈常栋1,钱晓辉1   

  1. 1.南京航空航天大学飞行器环境控制与生命保障工业和信息化部重点实验室,江苏 南京 210016
    2.江苏科技大学能源动力工程学院,江苏 镇江 212003
  • 收稿日期:2019-10-07 修回日期:2019-11-08 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 蒋彦龙 E-mail:hj_pei@nuaa.edu.cn;yanglong_jiang@nuaa.edu.cn
  • 作者简介:裴后举(1992—),男,博士研究生,hj_pei@nuaa.edu.cn
  • 基金资助:
    江苏高校优势学科建设工程资助项目

Forced convective heat transfer around spherical aerostat based on M-L transition model

Houju PEI1(),Yanlong JIANG1(),Hong SHI2,Yonglong CUI1,Changdong CHEN1,Xiaohui QIAN1   

  1. 1.Key Laboratory of Aircraft Environment Control and Life Support, MIIT, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, Jiangsu, China
    2.School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
  • Received:2019-10-07 Revised:2019-11-08 Online:2020-04-25 Published:2020-05-22
  • Contact: Yanlong JIANG E-mail:hj_pei@nuaa.edu.cn;yanglong_jiang@nuaa.edu.cn

摘要:

外表面强迫对流换热是影响临近空间浮空器热控的重要因素,而流体的流动状态对强迫对流换热具有十分重要的影响。目前对浮空器外表面强迫对流换热的仿真研究多采用雷诺时均方程,将流动作为全湍流进行计算,且并未考虑转捩现象的影响。为了研究转捩现象对强迫对流换热的影响,首先通过在Reynolds数为1.14×106情况下采用M-L转捩模型球体浮空器绕流得到的结果与实验结果以及采用Shear Stress Transfer(SST)k-ωk-ε模型模拟结果进行对比分析,验证了M-L转捩模型在模拟球体浮空器强迫对流换热时的优越性。在验证数值模拟方法的基础上,分析了Reynolds数对球体浮空器强迫对流换热的影响。基于数值模拟得到的结果,在Reynolds数为106~108的范围内,拟合得到了球体浮空器强迫对流换热关系式。

关键词: 强迫对流换热, 热力学, M-L模型, 转捩过程, 湍流, 热力学过程

Abstract:

The forced convective heat transfer is an important aspect of the thermal control of near-space aerostats and it is well known that the flow state (laminar or turbulent) has a significant impact on it. Currently, most numerical studies on forced convective heat transfer are conducted using the Reynolds-averaged Navier-Stokes equations, for example, the Spalart-Allmaras (SA) model, k-ε model, k-ω model, and the shear-stress transport k-ω model. However, these turbulent models consider the flow state as a fully developed turbulence and the transition process is not taken into account, which may lead to imprecise simulation results. Therefore, an appropriate method is needed to simulate the transition process. In this study, the M-L transition model is used and its applicability is verified by comparing the pressure coefficient around a spherical aerostat obtained from different turbulent models with those from experimental data of the literature. The numerical simulation is carried out using the fluid dynamic software CFX with the Reynolds number ranging from 106 to 108. The average Nusselt number is obtained and a new correlation of Nu for the forced convective heat transfer around a spherical aerostat is proposed.

Key words: forced convective heat transfer, thermodynamics, M-L transition model, transition process, turbulent flow, thermodynamics process

中图分类号: 

  • V 247

图1

计算域及边界条件"

图2

Y=0平面网格"

图3

Y=0截面流动示意图"

图4

球体表面时均压力系数Cp分布曲线(Re=1.14×106)"

表1

网格数量对Nu的影响"

Reynolds数网格数量/个Nusselt数
106120万352.99
270万353.20
480万354.03
107120万739.04
270万750.30
480万763.37
108120万1079.71
270万1102.18
480万1133.78

图5

Nusselt数与Reynolds数的关系曲线"

图6

本文计算结果与文献结果对比"

1 Anthony C, James D. Initial feasibility assessment of a high-altitude long endurance airship: report of National Aeronautics and Space Administration [R]. Ohio: NASA, 2003.
2 Lee M, Smith S, Androulakakis S. The high-altitude lighter than air airship efforts at the US Army Space and Missile Defense Command/Army Forces Strategic Command [C]//AIAA. 18th AIAA Lighter-than-air Systems Technology Conference. Seattle, Washington: American Institute of Aeronautics and Astronautics,2009: 1-26.
3 Ü Kunsel I, Ü Deniz. A low cost alternative for satellites-tethered ultra-high altitude balloons [C]// IEEE. Proceedings of 5th International Conference on Recent Advances in Space Technologies - RAST2011. Istanbal, Turkey: Institute of Electrical and Electronics Engineers, 2011: 13-16.
4 Santapietro J J. Persistent wide area surveillance from an airship [J]. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(6): 11-16.
5 Keim N, Samsundar J, Barton J. Senior design project: low-altitude unmanned reconnaissance airship (LAURA) [J]. Johns Hopkins Applied Technical Digest, 2010, 28(3): 276-277.
6 王柏林, 杨加春, 郭虓. 基于平流层飞艇的气象探测技术探索[J]. 气象科技进展, 2019, 9(4): 6-13.
Wang B L, Yang J C, Guo X. Study of meteorological observation technology based on stratospheric airship [J]. Advances in Meteorological Science and Technology, 2019, 9(4): 6-13.
7 彭桂林, 万志强. 中国浮空器遥感遥测应用现状与展望[J]. 地球信息科学学报, 2019, 21(4): 504-511.
Peng G L, Wan Z Q. The present situation and prospect of aerostat applied to remote sensing and remote survey in China [J]. Journal of Geo-information Science, 2019, 21(4): 504-511.
8 武江涛, 麻震宇, 侯中喜, 等. 平流层飞艇强迫对流特性数值仿真分析[J]. 国防科技大学学报, 2016, 38(2): 177-182.
Wu J T, Ma Z Y, Hou Z X, et al. Numerical research on forced convective heat transfer of stratospheric airship [J]. Journal of National University of Defense Technology, 2016, 38(2): 177-182.
9 Vliet G C, Leppert G. Forced convection heat transfer from an isothermal sphere to water [J]. Journal of Heat Transfer, 1961, 83(2): 163-163.
10 Yao W, Lu X, Wang C, et al. A heat transient model for the thermal behavior prediction of stratospheric airships [J]. Applied Thermal Engineering, 2014, 70(1): 380-387.
11 Shi H, Geng S S, Qian X H, et al. Thermodynamics analysis of a stratospheric airship with hovering capability [J]. Applied Thermal Engineering, 2019, 146: 600-607.
12 Will J B, Kruyt N P, Venner C H. An experimental study of forced convective heat transfer from smooth, solid spheres [J]. International Journal of Heat & Mass Transfer, 2017, 109: 1059-1067.
13 Kreith F, Kreider J F. Numerical prediction of the performance of high-altitude balloons: report of NCAR [R]. Colorado: NCAR, 1974.
14 Carlson L A, Horn W J. New thermal and trajectory model for high-altitude balloons [J]. Journal of Aircraft, 1983, 20(6): 500-507.
15 方贤德, 王伟志, 李小建. 平流层飞艇热仿真初步探讨[J]. 航天返回与遥感, 2007, 28(2): 5-9.
Fang X D, Wang W Z, Li X J. A study of thermal simulation of stratospheric airships [J]. Spacecraft Recovery & Remote Sensing, 2007, 28(2): 5-9.
16 Whitaker S. Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles [J]. AIChE Journal, 1972, 18(2): 361-371.
17 Dai Q M, Fang X D, Xu Y. Numerical study of forced convective heat transfer around a spherical aerostat [J]. Advances in Space Research, 2013, 52(12): 2199-2203.
18 Dai Q M, Fang X D. Numerical study of forced convective heat transfer around airships [J]. Advances in Space Research, 2016, 57(3): 776-781.
19 Li H, Rong L, Zong C, et al. A numerical study on forced convective heat transfer of a chicken (model) in horizontal airflow [J]. Biosystems Engineering, 2016, 150: 151-159.
20 Kishore N, Gu S. Momentum and heat transfer phenomena of spheroid particles at moderate Reynolds and Prandtl numbers [J]. International Journal of Heat and Mass Transfer, 2011, 54(11/12): 2595-2601.
21 Menter F R, Langtry R B, Likki S R, et al. A correlation based transition model using local variables part1-model formulation [C]// ASME Turbo Expo. Power for Land, Sea, and Air. Vienna, Austria: Proceedings of ASME Turbo Expo, 2004: 413-422.
22 Langtry R B, Menter F R, Likki S R, et al. A correlation-based transition model using local variables(Ⅱ): Test cases and industrial applications [J]. ASME J. Turbomach., 2006, 128(3): 423-434.
23 Amchenbach E. Experiments on the flow past spheres at very high Reynolds numbers [J]. Fluid Mech., 1972, 54(3): 565-575.
[1] 李攀, 孔慧, 宋卓栋, 张作毅, 王云芳. 甲醇-甲醛-聚甲氧基二甲醚三元体系汽液平衡[J]. 化工学报, 2020, 71(S1): 7-14.
[2] 王晨, 折晓会, 张小松. 含空气净化过程的液态空气储能热力学研究[J]. 化工学报, 2020, 71(S1): 23-30.
[3] 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321.
[4] 孟繁鑫, 孙佳宁, 周月, 高赞军, 程定斌. 飞机环控系统空气循环机仿真建模及试验校核[J]. 化工学报, 2020, 71(S1): 328-334.
[5] 郭良, 李恒, 庞丽萍, 毛晓东, 赵竞全, 杨晓东. 高速运载器发电/制冷联合系统稳态性能[J]. 化工学报, 2020, 71(S1): 391-396.
[6] 郭栋才, 盛强, 杨鹏, 徐捷, 王泽, 杨波, 曹娇坤. 基于热电效应的高效环控系统[J]. 化工学报, 2020, 71(S1): 404-410.
[7] 杨晓东, 庞丽萍, 阿嵘, 金亮. 高速飞行器燃油热管理系统飞行热航时[J]. 化工学报, 2020, 71(S1): 425-429.
[8] 张洁, 庞丽萍, 曲洪权, 王天博. 基于随机配置网络的机载电子吊舱多工况热模型[J]. 化工学报, 2020, 71(S1): 441-447.
[9] 杨东升, 阿嵘, 张建斌, 王大鹏, 张斌, 徐迎丽, 秦俊杰, 刘淑芬. 航天器舱内环境下非金属增材制造热效应分析[J]. 化工学报, 2020, 71(S1): 486-493.
[10] 谭畯坤, 刘玉东, 耿世超, 陈兵, 童明伟. 真空探针冷冻和复温性能实验测试及数值模拟[J]. 化工学报, 2020, 71(4): 1440-1449.
[11] 李济超, 季璨, 吕明明, 王静, 刘志刚, 李慧君. 微通道内单柱绕流特性的Micro-PIV实验研究[J]. 化工学报, 2020, 71(4): 1597-1608.
[12] 车健, 江锦波, 李纪云, 彭旭东, 马艺, 王玉明. 节流孔出气模式对静压干气密封稳态性能影响[J]. 化工学报, 2020, 71(4): 1734-1743.
[13] 孙宗康, 张笑丹, 杨林军, 陈帅, 吴新. 化学与湍流团聚耦合促进燃煤细颗粒物团聚与脱除[J]. 化工学报, 2020, 71(3): 1317-1325.
[14] 赵文英, 李文文, 孙晓岩, 曹晓荣, 项曙光. 基于PR立方型状态方程普遍化温度函数的研究与评价[J]. 化工学报, 2020, 71(3): 1234-1245.
[15] 董吉开, 杜文莉, 王冰, 许乔伊. 湍流状态下化学品扩散溯源中不同目标函数的影响分析[J]. 化工学报, 2020, 71(3): 1163-1173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .