化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 335-340.doi: 10.11949/0438-1157.20191102

• 过程系统工程 • 上一篇    下一篇

特种车辆舱室送风系统布局仿真优化

徐刚1(),庞丽萍2()   

  1. 1.中车青岛四方机车车辆股份有限公司,山东 青岛 266111
    2.北京航空航天大学航空科学与工程学院,北京 100191
  • 收稿日期:2019-10-07 修回日期:2019-12-27 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 庞丽萍 E-mail:dk418@163.com;pangliping@buaa.edu.cn
  • 作者简介:徐刚(1984—),男,博士,高级工程师,dk418@163.com

Simulation and optimization of air supply system layout for special vehicle cabin

Gang XU1(),Liping PANG2()   

  1. 1.China Railway Rolling Stock Qingdao SiFang Compang Limited, Qingdao 266111, Shandong, China
    2.School of Aviation Science and Engineering, Beihang University, Beijing 100191, China
  • Received:2019-10-07 Revised:2019-12-27 Online:2020-04-25 Published:2020-05-22
  • Contact: Liping PANG E-mail:dk418@163.com;pangliping@buaa.edu.cn

摘要:

特种车辆由于其功能特殊性和封闭性,无法像民用车辆一样利用窗户的开闭来控制舱室通风,长时间驾驶特种车辆,驾驶舱面临空间小、冷源少、热负荷大、缺乏新鲜空气等问题,且外部环境条件复杂。这就要求特种车辆舱室送风系统精细设计,满足人员和多个装置的热舒适和热控需求,因此有必要基于特殊车辆的驾驶舱特点,合理布局并优化通风系统,保证整舱热要求。为了让座舱送风与舱内热源热交换尽量完全,带出更多的热量,首先针对某型特种车辆,建立了典型舱室和乘员的三维物理模型和仿真模型。针对10种送风模式进行了详细的气流组织仿真优化分析,获得了特种车辆舱室多物理场。气流组织优化是从风口形式和送风口位置两方面进行,风口形式优化中提出多种风口组合形式,分别进行仿真。以设备温控、人员热舒适和空气龄等为目标,利用评价函数对仿真结果进行评价,对10种类型的送风工况进行了仿真。从仿真结果中,以上述多优化目标为依据,进一步开展了针对初步优选的送风形式的风口位置优化。在风口形式优化结果的基础上,采用遗传算法,将位置参数设为优化参数,选取两个评估函数作为优化的目标函数,并将头足温差等约束条件设置到优化模型中,对仿真结果进行筛选和逆优化研究,最终得到最优风口位置,完成气流组织优化。研究对于全密封特种车辆的有限空间热舒适性和空气质量研究具有一定意义。

关键词: 舱室环境, 送风优化, 热舒适性, 空气龄

Abstract:

Because of its special function and closeness, special vehicles can not use the opening and closing of windows to control cabin ventilation like civil vehicles, drive special vehicles for a long time, the cockpit faces small space, less cold source, large heat load, lack of fresh air, and the external environmental conditions are complex. This requires the fine design of the air supply system for special vehicle compartments to meet the thermal comfort and thermal control needs of personnel and multiple devices, so it is necessary to optimize the ventilation system based on the cockpit characteristics of special vehicles to ensure the thermal requirements of the whole cabin. In order to make the heat exchange between the cockpit air supply and the heat source in the cabin as complete as possible and bring out more heat, this paper first establishes the three-dimensional physical model and simulation model of the typical cabin and crew for a special vehicle. The simulation and optimization analysis of air distribution for 10 kinds of air supply modes is carried out, and the multi-physical field of special vehicle cabin is obtained. The optimization of air distribution is carried out from two aspects: tuyere form and tuyere position. In the tuyere form optimization, a variety of tuyere combination forms are proposed and simulated respectively. Aiming at equipment temperature control, personnel thermal comfort and air age, the simulation results are evaluated by using evaluation function, and 10 types of air supply conditions are simulated. From the simulation results, based on the above multi-optimization objectives, the tuyere position optimization for the preliminary optimal air supply form is further carried out. On the basis of the optimization results of tuyere form, genetic algorithm is used to set the position parameters as optimization parameters, two evaluation functions are selected as the optimization objective functions, and the constraint conditions such as head and foot temperature difference are set to the optimization model. The simulation results are screened and the inverse optimization is carried out. Finally, the optimal tuyere position is obtained and the optimization of air distribution is completed. This study has certain significance for the study of limited space thermal comfort and air quality of fully sealed special vehicles.

Key words: cabin environment, air supply optimization, thermal comfort, air age

中图分类号: 

  • TQ 028.8

图1

指标变化趋势"

图2

PMV均匀性"

图3

工况6对应风口布置"

表1

风口位置参数取值范围"

风口Y轴/cmZ轴/cm
inlet1150~600(L1)700~850(L2)
inlet2350~700(L3)700~850(L4)
inlet4150~350(L5)

图4

优化结果散点图"

图5

空气龄云图"

图6

PMV云图"

图7

送风轨迹线"

1 周翔, 朱颖心, 欧阳沁, 等. 环境控制能力对人体热感觉影响的实验研究[J]. 建筑科学, 2010, 26(10): 177-180.
Zhou X, Zhu Y X, Ouyang Q, et al. Experimental study on the effect of environmental control ability on human thermal perception [J]. Building Science, 2010, 26(10): 177-180.
2 Dygert R K, Dang T Q. Experiment validation of local exhaust strategies for improved IAQ in aircraft cabins [J]. Building Environ., 2012, 47(1): 76-88.
3 Pang L P, Zhang J, Wanyan X R, et al. Field study of neutrality cabin temperature for Chinese passenger in economy class of civil aircraft [J]. Journal of Thermal Biology, 2018, 78: 312-319.
4 International Organization for Standardization. ISO 7730: 2005 Ergonomics of the thermal environment-Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria [S]. Geneva: ISO, 2005.
5 ANSI/ASHRAE Standard 55-2010. Thermal Environmental Conditions for Human Occupancy [S]. Atlanta: American Society of Heating Refrigerating and Air conditioning Engineers, 2010.
6 Pang L P, Qin Y, Liu D, et al. Thermal comfort assessment in civil aircraft cabins [J]. Chinese Journal of Aeronautics, 2014, 27(2): 210-216.
7 Liu W, Duan R, Chen C, et al. Inverse design of the thermal environment in an airliner cabin by use of the CFD-based adjoint method [J]. Energy and Buildings, 2015, 104: 147-155.
8 Liu D, Pang L P, Liu M, et al. Experiment evaluation and simulation optimization of air distribution mode for underwater cabin [J]. Applied Thermal Engineering, 2016, 106: 1282-1289.
9 Kabanshi A, Yang B, et al. Occupants perception of air movements and air quality in a simulated classroom with an intermittent air supply system [J]. Indoor and Built Environment, 2019, 28(1): 63-76.
10 Dietmar S, Fabian O, Wolfgang F. Novel speed-controlled exhaust-air to supply-air heat pump combined with a ventilation system [J]. Applied Thermal Engineering, 2019: 114230.
11 Fang Z S, Liu H, Li B Z, et al. Investigation of thermal comfort and the nozzle usage behaviour in aircraft cabins [J]. Indoor and Built Environment, 2019, 28(1): 118-131.
12 Zhang S, He W P, Chen D K, et al. Thermal comfort analysis based on PMV/PPD in cabins of manned aubmersibles [J]. Building and Environment, 2019, 148: 0360-1323.
13 James B, Diana H, Elena G, et al. Reinforcement learning-based thermal comfort control for vehicle cabins [J]. Mechatronics, 2018, 50: 413-421.
14 Liu H M, Lian Z W, Gong Z H, et al. Thermal comfort, vibration, and noise in Chinese ship cabin environment in winter time [J]. Building and Environment, 2018, 135: 104-111.
15 Zhang T, Yin S, Wang S. An under-aisle air distribution system facilitating humidification of commercial aircraft cabins [J]. Building Environment, 2010, 45: 907-917.
16 Yin H S, Shen X, Huang Y, et al. Modeling dynamic responses of aircraft environmental control systems by coupling with cabin thermal environment simulations [J]. Building Simulation, 2016, 9(4): 459-468.
17 Shah S, Liu G, Greatrix D R. Modelling, simulation and experimental evaluation of a crossflow heat exchanger for an aircraft environmental control system [J]. Proceedings of the Institution of Mechanical Engineers, 2010, 224(5): 613-623.
18 Leo T J, Perez-Grande I. A thermoeconomic analysis of a commercial aircraft environmental control system [J]. Applied Thermal Engineering, 2005, 25(2/3): 309-325.
19 Yuan W X, Li Y X, et al. Comparison study of membrane dehumidification aircraft environmental control systems [J]. Journal of Aircraft, 2012, 49(3): 815-821.
20 Schlabe D, Lienig J. Model-based thermal management functions for aircraft systems [C]// SAE 2014 Aerospace Systems and Technology Conference, SAE International. 2014: 2203.
21 Maier J, Marggraf-Micheel C, Zinn F, et al. Ceiling-based cabin displacement ventilation in an aircraft passenger cabin: analysis of thermal comfort [J]. Building Environment, 2018, 146: 29-36.
22 Wu Y, Liu H, Li B, et al. Thermal comfort criteria for personal air supply in aircraft cabins in winter [J]. Building and Environment, 2017, 125: 373-382.
23 Danca P, Bode F, Nastase L. CFD simulation of a cabin thermal environment with and without human body – thermal comfort evaluation [J]. E3S Web of Conferences, 2018, 32: 1018.
24 Maier J, Marggraf-Micheel C. Thermal comfort of different displacement ventilation systems in an aircraft passenger cabin [J]. Building Environment, 2017, 111: 256-264.
25 Liu Z Y, Chen J, Chen H, et al. Air supply regulation for PEMFC systems based on uncertainty and disturbance estimation [J]. International Journal of Hydrogen Energy, 2018, 43(25): 11559-11567.
26 Gao Z, Wang Q, Hu H W, et al. Effect of air supply mode on indoor air quality using fresh air system [J]. MATEC Web of Conferences, 2018, 175: 4014.
27 Cui W, Wu T, Ouyang Q, et al. Passenger thermal comfort and behavior: a field investigation in commercial aircraft cabins [J]. Indoor Air, 2016, 27: 94-107.
28 Sadrrizadeh S. Numerical investigation of thermal comfort in an aircraft passenger cabin [J]. E3S Web of Conferences, 2019, 111: 01027.
29 Du X Y, Li B Z, Liu H, et al. The appropriate airflow rate for a nozzle in commercial aircraft cabins based on thermal comfort experiments [J]. Building and Environment, 2017, 112: 132-143.
[1] 林章, 周天泰, 曾志宽. 层式通风——高温空调下的出路[J]. 化工学报, 2008, 59(S2): 235-241.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .