化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 179-186.doi: 10.11949/0438-1157.20191100

• 流体力学与传递现象 • 上一篇    下一篇

基于斯特林制冷机的文物恒湿展柜设计及实验研究

汪宁1,2(),张学军1,2(),赵阳1,2,甘智华1,2,张春伟1,2,余萌1,2   

  1. 1.浙江大学制冷与低温研究所,浙江 杭州 310027
    2.浙江省制冷与低温技术重点实验室,浙江 杭州 310027
  • 收稿日期:2019-10-07 修回日期:2019-11-08 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 张学军 E-mail:wangning613@zju.edu.cn;xuejzhang@zju.edu.cn
  • 作者简介:汪宁(1995—),女,硕士研究生,wangning613@zju.edu.cn
  • 基金资助:
    浙江省文物保护科技项目(2020009)

Design and experimental study on constant humidity relic showcase using Stirling cryocooler

Ning WANG1,2(),Xuejun ZHANG1,2(),Yang ZHAO1,2,Zhihua GAN1,2,Chunwei ZHANG1,2,Meng YU1,2   

  1. 1.Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, Zhejiang, China
    2.Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Hangzhou 310027, Zhejiang, China
  • Received:2019-10-07 Revised:2019-11-08 Online:2020-04-25 Published:2020-05-22
  • Contact: Xuejun ZHANG E-mail:wangning613@zju.edu.cn;xuejzhang@zju.edu.cn

摘要:

博物馆文物保存过程中相对湿度对文物的影响尤其重要,因此针对目前小型展柜广泛采用的半导体制冷存在制冷量小的缺点,结合斯特林制冷机制冷量大、寿命长、安全可靠等优点,设计并搭建了一台基于斯特林制冷的文物恒湿展柜装置,实现对微环境中相对湿度的精确调节。将斯特林制冷机的冷头置于优化设计的水槽中用于控制水温,采用空气与水直接接触的方式控制展柜内空气湿度。结果表明:使用散热片以及小型循环水泵可以大幅提升冷头与水之间的换热效率;合理的风机控制策略可以有效提升展柜湿度调节速度,维持湿度稳定,降低系统能耗;展柜内的相对湿度在45.0%~65.0%之间连续可调,并能保持稳定。

关键词: 文物展柜, 恒湿, 斯特林制冷机, 优化设计, 传热, 传质

Abstract:

The influence of relative humidity on cultural relics is significantly important in the preservation of cultural relics in museums. Considering the disadvantage of low cooling capacity in the semiconductor cooler which is widely used in small relic showcases currently, and the advantages of Stirling cryocooler, such as large cooling capacity, long service life, safety and reliability, etc., a novel constant humidity relic showcase using a Stirling cryocooler is designed and built to achieve the precise regulation of relative humidity in the microenvironment. In this device, the cold head of the Stirling cryocooler is placed in an optimal-designed water tank to control the water temperature, and the air humidity in the showcase is controlled by the direct contact between air and water for heat and mass transfer. The results show that the heat transfer efficiency between cold head and water can be greatly improved by using heat sink and circulating water pump. Appropriate fan control strategy can effectively improve the humidity control speed, maintain the humidity stability and reduce the system energy consumption. The relative humidity in the showcases can be adjusted continuously from 45.0% to 65.0% under the premise of being stable.

Key words: relic showcase, constant humidity, Stirling cryocooler, optimal design, heat transfer, mass transfer

中图分类号: 

  • TB 651

图1

文物恒湿展柜装置1—展柜;2—展柜外温湿度传感器;3—展柜内温湿度传感器;4—回风口;5—数据采集仪;6—计算机;7—展柜机箱;8—铂电阻温度计;9—水槽;10—水;11—斯特林制冷机;12—送风口"

图2

斯特林制冷机实物"

图3

水槽结构"

图4

水槽与制冷机装配"

图5

冷头加装散热片结构"

图6

布置散热片/水泵前后水温变化"

图7

同时开启制冷机和风机时温湿度变化"

图8

减湿后温湿度变化"

图9

目标水温为7.0℃时温湿度变化"

图10

不同水温下稳定时展柜内相对湿度"

1 周佶. 自然建造理念下的博物馆展柜设计研究[D]. 杭州: 中国美术学院, 2017.
Zhou J. Study on the design of museum display cases under the concept of natural construction [D]. Hangzhou: The China Academy of Art, 2017.
2 Huijbregts Z, Kramer R P, Martens M H J, et al. A proposed method to assess the damage risk of future climate change to museum objects in historic buildings [J]. Building and Environment, 2012, 55(9): 43-56.
3 Luo X L, Gu Z L, Li T Y, et al. Environmental control strategies for the in situ preservation of unearthed relics in archaeology museums [J]. Journal of Cultural Heritage, 2015, 16(6): 790-797.
4 侯华波, 喻李葵. 温湿独立控制展柜的数值模拟研究[J]. 制冷与空调, 2017, 31(2): 210-214.
Hou H B, Yu L K. Numerical simulation on the temperature and humidity independent control showcase [J]. Refrigeration & Air Conditioning, 2017, 31(2): 210-214.
5 Pavlogeorgatos G. Environmental parameters in museums [J]. Building and Environment, 2003, 38(12): 1457-1462.
6 Scott D A. Bronze disease: a review of some chemical problems and the role of relative humidity [J]. Journal of the American Institute for Conservation, 2013, 29(2): 193-206.
7 Brill R H. Incipient crizzling in some early glasses [J]. Bulletin of the American Group. International Institute for Conservation of Historic and Artistic Works, 1972, 12(2): 46-47.
8 侯华波. 文物保存湿度指标的确定方法及展框温湿度控制技术研究[D]. 长沙: 中南大学, 2007.
Hou H B. Research on the determination method of cultural relic preservation humidity index and the temperature and humidity control technology of exhibition frame [D]. Changsha: Central South University, 2007.
9 Frazer S, Magan N, Aldred D. The influence of water activity and temperature on germination, growth and sporulation of Stachybotrys chartarum strains [J]. Mycopathologia, 2011, 172(1): 17-23.
10 Padfield T. A cooled display case [J]. Museum International, 2009, 37(2): 102-103.
11 李文杰. 不同边界条件下文物展柜的动力响应分析[D]. 北京: 北京交通大学, 2015.
Li W J. Dynamic response analysis for showcase of cultural relics under different boundary conditions [D]. Beijing: Beijing Jiaotong University, 2015.
12 华东建筑设计院. 博物馆建筑设计规范: JGJ 66—9l [S]. 北京: 中国建筑工业出版社, 1991.
East China Architeclural Design and Research Institute. Standard of museum architecture design: JGJ 66—9l [S]. Beijing: China Architecture and Building Press, 1991.
13 邓妮, 武双磊, 陈胡星. 调湿材料的研究概述[J]. 材料导报, 2013, 27(s2): 368-371.
Deng N, Wu S L, Chen H X. Overview on research of humidity-controlling materials [J]. Material Review, 2013, 27(s2): 368-371.
14 Julie C. Controlling relative humidity with saturated calcium nitrate solutions [J]. WaaC Newsletter, 1991, 13(1): 17-18.
15 徐方圆, 解玉林, 吴来明. 文物保存微环境用调湿材料调湿性能研究[J]. 文物保护与考古科学, 2009, 21(s1): 18-23.
Xu F Y, Xie Y L, Wu L M. Research on the performance of some humidity-controlling materials used in museum micro-environments [J]. Sciences of Conservation and Archaeology, 2009, 21(s1): 18-23.
16 Simonova I A, Freni A, Restuccia G, et al. Water sorption on composite “silica modified by calcium nitrate” [J]. Microporous and Mesoporous Materials, 2009, 122(1/2/3): 223-228.
17 Aristov Y I. Challenging offers of material science for adsorption heat transformation: a review [J]. Applied Thermal Engineering, 2013, 50(2): 1610-1618.
18 王恒旭, 张学军, 郑幼明, 等. 扩散吸收式恒湿文物展柜实验研究[J]. 低温工程, 2016, 209(1): 32-37.
Wang H X, Zhang X J, Zheng Y M, et al. Experimental study on constant humidity relic showcase based on diffusion absorption refrigeration system [J]. Cryogenics, 2016, 209(1): 32-37.
19 杨秀荣, 刘媛媛, 孟凡良, 等. 基于半导体制冷的小空间控温除湿系统研究[J]. 现代科学仪器, 2012, 26(3): 51-54.
Yang X R, Liu Y Y, Meng F L, et al. Investigation of temperature controlling and dehumidification system for small space based on semiconductor cooler [J]. Model Scientific Instruments, 2012, 26(3): 51-54.
20 Vián J G, Astrain D, Dominguez M. Numerical modelling and a design of a thermoelectric dehumidifier [J]. Applied Thermal Engineering, 2002, 22(4): 407-422.
21 万闪闪. 小型独立文物陈列柜微环境控制系统的研究[D]. 南京: 东南大学, 2008.
Wan S S. Research on micro-environment control system of small independent cultural relic display cabinet [D]. Nanjing: Southeast University, 2008.
22 钟颖, 智能展柜温湿度测量与控制系统设计[D]. 合肥: 合肥工业大学, 2016.
Zhong Y. Design of temperature and humidity measurement and control system of intelligent showcase [D]. Hefei: Hefei University of Technology, 2016.
23 李爱博. 单级半导体制冷器制冷特性分析及研究[D]. 武汉: 华中科技大学, 2011.
LI A B. Analysis and research on the refrigeration characteristics of single-stage thermoelectric refrigerator [D]. Wuhan: Huazhong University, 2011.
24 程显耀. 半导体制冷热端散热器传热特性研究[D]. 济南: 山东大学, 2016.
Cheng X Y. Research on heat transfer characteristics of heat sink in semiconductor refrigeration [D]. Jinan: Shandong University, 2016.
25 代彦军, 戴维涵, 王如竹. 半导体冰箱冷热端散热条件实验研究[J]. 工程热物理学报, 2005, 26(s1): 221-224.
Dai Y J, Dai W H, Wang R Z. Experimental investigation on conditions of heat exchanging for both hot and cold sides in a thermoelectric refrigerator [J]. Journal of Engineering Thermophysics, 2005, 26(s1): 221-224.
26 陈曦, 吴亦农, 王维杨. 斯特林制冷机用于冰箱技术的发展优势[J]. 制冷学报, 2004, 25(4): 49-53.
Chen X, Wu Y N, Wang W Y. Advantages of developing refrigerator technology using Stirling cycle cooler [J]. Journal of Refrigeration, 2004, 25(4): 49-53.
27 陈国邦. 小型低温制冷机原理[M]. 北京: 科学出版社, 2010: 97-176.
Chen G B. Principle of Small Cryogenic Cooler [M]. Beijing: Science Press, 2010: 97-176.
28 曾烊平, 陈曦. 自由活塞斯特林制冷机的研究与应用进展[J]. 真空与低温, 2017, 23(2): 68-75.
Zeng Y P, Chen X. Overview of research and application of free-piston Stirling cooler [J]. Vacuum and Cryogenics, 2017, 23(2): 68-75.
29 Sun J F, Zhao C Z, Mu J L, et al. Tentative application of Stirling cooler technology in butter churning process [J]. European Food Research and Technology, 2013, 237(2): 223-228.
30 陈曦, 张华, 吴亦农. 斯特林制冷机用于商业制冷的研究现状初析[J]. 制冷学报, 2008, 29(6): 51-56.
Chen X, Zhang H, Wu Y N. Review of Stirling cooler key technologies applied in commercial refrigeration [J]. Journal of Refrigeration, 2008, 29(6): 51-56.
31 Caughley A, Sellier M, Gschwendtner M, et al. A free-piston Stirling cryocooler using metal diaphragms [J]. Cryogenics, 2016, 80(01): 8-16.
32 刘庸, 段兵兵, 张学军, 等. 直接接触式恒湿设备中热湿交换水箱的结构优化分析[J]. 低温工程, 2018, 225(5): 65-70.
Liu Y, Duan B B, Zhang X J, et al. Structural optimization analysis of heat and mass transfer water tank in direct contact constant humidity equipment [J]. Cryogenics. 2018, 225(5): 65-70.
[1] 刘子初, 全贞花, 赵耀华, 靖赫然, 姚孟良, 刘新. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128.
[2] 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157.
[3] 孙苏芮, 王德昌, 张金翠, 刘振, 李延辉. 膜蓄能器放能过程的传热传质特性分析[J]. 化工学报, 2020, 71(S1): 158-165.
[4] 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171.
[5] 陈玮玮, 方贤德, 鹿世化, 林福建, 张烨. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211.
[6] 王瑞琪, 高赞军, 杨华, 胡文超, 詹宏波. 机载冷源参数对蒸发循环系统性能的影响[J]. 化工学报, 2020, 71(S1): 212-219.
[7] 常健佩, 黄翔, 安苗苗, 李朝阳. 蒸发冷却冷水机组的原理、性能与适用性分析[J]. 化工学报, 2020, 71(S1): 236-244.
[8] 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37.
[9] 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321.
[10] 周月, 张鹤林, 程定斌, 尹俊成. 典型空气循环制冷系统仿真研究[J]. 化工学报, 2020, 71(S1): 341-345.
[11] 张晨宇, 王宁, 徐洪涛, 张剑飞, 曹萌. 基于相变材料的太阳能PV/T系统性能[J]. 化工学报, 2020, 71(S1): 361-367.
[12] 郭良, 李恒, 庞丽萍, 毛晓东, 赵竞全, 杨晓东. 高速运载器发电/制冷联合系统稳态性能[J]. 化工学报, 2020, 71(S1): 391-396.
[13] 郭栋才, 盛强, 杨鹏, 徐捷, 王泽, 杨波, 曹娇坤. 基于热电效应的高效环控系统[J]. 化工学报, 2020, 71(S1): 404-410.
[14] 马德胜, 庞丽萍, 毛晓东, 董素君. 机载综合环控系统的热管理[J]. 化工学报, 2020, 71(S1): 436-440.
[15] 李阳, 常守金, 胡海涛, 孙浩然, 赖展程, 刘善敏. 飞行器机载精密仪器温控系统性能的实验研究[J]. 化工学报, 2020, 71(S1): 77-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .