• 流体力学与传递现象 •

### 板翅式换热器压力特性工程计算方法

1. 中国航空工业集团公司金城南京机电液压工程研究中心，江苏 南京 211106
• 收稿日期:2019-10-07 修回日期:2019-11-16 出版日期:2020-04-25 发布日期:2020-05-22
• 通讯作者: 贺鹏程 E-mail:suchsoup@126.com
• 作者简介:贺鹏程（1967—），男，硕士，工程师，suchsoup@126.com

### Discussion on method of engineering computation of plate-fin heat exchanger pressure characteristic

Pengcheng HE(),Li ZHUANG,Liang HU,Gang LIU,Ruiqi WANG,Yaqiang BAO

1. Nanjing Engineering Institute of Aircraft Systems, AVIC, Nanjing 211106, Jiangsu, China
• Received:2019-10-07 Revised:2019-11-16 Online:2020-04-25 Published:2020-05-22
• Contact: Pengcheng HE E-mail:suchsoup@126.com

Abstract:

Heat exchanger is the fundamental equipment of industry, which is important for the air vehicle, widely used in engine and ECS subsystem which is needed for it. The heat exchangers are usually used for passenger safety and comfort, which is also the important device for other equipment to keep normal and efficient work. The references of heat exchanger design and hydrodynamics have been contrasted and analyzed, some concepts and definitions are different from each other, the engineering calculation expressions of pressure characteristic of plate-fin heat exchangers have been put forward on the basis of hydrodynamics. One type of offset strip fin has been chosen for air-air heat exchanger, the one-pass and two-pass heat exchanger was set, which contained sudden expansion and contraction and 90°elbow and 180° elbow for the local pressure drop computation, the heat transfer is not considered, the Halton sequence is used for quasi-Monte Carlo, which is for heat exchanger at some temperature and pressure and Re outlet conditions computation, the probabilistic analysis is worked for the conclusions. As the two kinds of calculation examples shown, the header pressure loss and drop are little part to total heat exchanger pressure drop at most conditions, and the most probability density is about 0.05, the ratios of the total pressure drops to outlet pressures are very little, the constant pressure can be used for calculation of the fluids property.

• TQ 053.2
 19 Qin S J, Ye W B. Heat Exchanger [M]. Beijing: Chemical Industry Press, 2003. 20 Идличе, 华绍曾, 杨学宁. 实用流体阻力手册[M]. 北京: 国防工业出版社, 1986. Идличек, Hua S Z, Yang X N. Handbook of Practical Fluid Resistance [M]. Beijing: National Defense Industry Press, 1986. 21 向文英. 流体力学与水泵实验教程[M]. 北京: 化学工业出版社, 2009. 1 Ed W, Yuri M. Pressure drop in two-phase slug/ bubble flows in mini scale capillaries [J]. International Journal of Multiphase Flow, 2009, 35(10): 879-884. 2 Jainender D A. Design of compact plate fin heat exchanger [D]. Rourkela: Department of Mechanical Engineering National Institute of Technology, 2009. 3 Awad M M, Muzychka Y S. Thermodynamic Optimization [M]// Jovan M. Heat Exchangers Basics Design Applications. Rijeka, InTech, 2012: 3-51. 4 Yuri S M, Yovanovich M M. Modeling the f and j characteristics for transverse flow through an offset strip fin at low Reynolds number [J]. Enhanced Heat Transfer, 2001, 8(4): 243-259. 5 Yuri S M. Analytical and experimental study of fluid friction and heat transfer in low Reynolds number flow heat exchangers [D]. Waterloo: University of Waterloo, 1999. 6 Culham J R, Khan W A, Yovanovich M M, et al. The influence of material properties and spreading resistance in the thermal design of plate fin heat sinks [J]. Transactions of the ASME, 2007, 129(1): 76-81. 7 Churchill S W, Usagi R. A general expression for the correlation rates of transfer and other phenomena [J]. AIChE Journal, 1972, 18(6): 1121-1128. 8 Tinaut F V, Melgar A, Rahman A A. Correlations for heat transfer and flow friction characteristics of compact plate-type heat exchangers [J]. Int. J. Heat Mass Transfer, 1992, 35(7): 1659-1665. 21 Xiang W Y. Experiment Course of Fluid and Pump [M]. Beijing: Chemical Industry Press, 2009. 22 马贵阳. 工程流体力学[M]. 北京: 石油工业出版社, 2009. 9 Muzychka Y S, Awad M M. Asymptotic generalizations of the Lockhart-Martinelli method for two-phase flows [J]. Journal of Fluids Engineering, 2010, 132(3): 1-12. 10 张良俊, 吴静怡. 板翅式换热器研究进展[J]. 真空与低温, 2016, 23(3): 138-142. Zhang L J, Wu J Y. Research progress of plate fin heat exchanger [J]. Vacuum & Cryogenics, 2016, 23(3): 138-142. 11 魏进家, 刘海燕, 龙延. 板翅式换热器流动和换热性能研究[J]. 工程热物理学报, 2012, 33(10): 1785-1788. Wei J J, Liu H Y, Long Y. Study of flow and heat transfer performance of plate-fin heat exchanger [J]. Journal of Engineering Thermophysics, 2012, 33(10): 1785-1788. 12 宋俊虓, 袁修干. 板翅式换热器的MATLAB仿真模型[J]. 北京航空航天大学学报, 2001, 27(5): 582-582. Song J X, Yuan X G. MATLAB simulation model of air to air plate fin heat exchanger [J]. Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(5): 582-582. 13 方博, 刘磊, 李建秋. 板翅式冷却器结构参数优化与仿真研究[J]. 机械设计与制造, 2018, 1(7): 229-231. Fang B, Liu L, Li J Q. Structural parameter optimization and simulation of plate fin cooler [J]. Machinery Design and Manufacture, 2018, 1(7): 229-231. 14 王臣, 钱奕枝, 陈斌. 板翅式换热器的数值模拟研究[J]. 暖通与空调, 2015, 43(5): 41-44. Wang C, Qian Y Z, Chen B. Numerical simulation for plate fin heat exchanger [J]. HVAC, 2015, 43(5): 41-44. 15 文键, 厉彦忠, 周爱民, 等. 板翅式换热器入口结构内流场的数值模拟[J]. 华中科技大学学报, 2006, 34(7): 5-8. Wen J, Li Y Z, Zhou A M, et al. Numerical and experimental investigation of inside flow patterns of the entrance configuration in plate fin heat exchanger[J]. Journal Huazhong University of Sci. & Tech., 2006, 34(7): 5-8. 16 文键, 厉彦忠, 周爱民, 等. 板翅式换热器入口流场的模拟及实验研究[J]. 化学工程, 2006, 34(8): 24-27. Wen J, Li Y Z, Zhou A M, et al. A numerical and experimental investigation of the flow field at the entrance of plate-fin heat exchanger [J]. Chemical Engineering (China), 2006, 34(8): 24-27. 17 齐铭. 制冷附件[M]. 北京: 航空工业出版社, 1992. Qi M. Refrigeration Accessories [M]. Beijing: Aviation Industry Press, 2004. 18 史美中, 王中铮. 换热器原理与设计[M]. 南京: 东南大学出版社, 2009. Shi M Z, Wang Z Z. Principle and Design of Heat Exchangers [M]. Nanjing: Southeast University Press, 2009. 19 秦书经, 叶文邦. 换热器[M]. 北京: 化学工业出版社, 2003. 22 Ma G Y. Engineering Fluid Mechanics [M]. Beijing: Petroleum Industry Press, 2009. 23 李小芹. 工程流体力学[M]. 北京: 中国水利电力出版社, 2009.Li X Q. Engineering Fluid Mechanics [M]. Beijing: China Water Resources and Electric Power Press, 2009. 24 谢振华, 宋存义. 工程流体力学[M]. 北京: 冶金工业出版社, 2007. Xie Z H, Song C Y. Engineering Fluid Mechanics [M]. Beijing: Metallurgical Industry Press, 2007. 25 林建忠. 流体力学[M]. 北京: 清华大学出版社, 2005. Lin J Z. Fluid Mechanics [M]. Beijing: Tsinghua University Press, 2005. 26 董军启. 车辆冷却系统空气侧特性研究[D]. 上海: 上海交通大学, 2007. Dong J Q. Research on air side and heat transfer characters of vehicle cooling system [D]. Shanghai: Shanghai Jiao Tong University, 2007. 27 孔珑. 工程流体力学[M]. 北京: 水利电力出版社, 1995. Kong L. Engineering Fluid Mechanics [M]. Beijing: Water Resources and Electric Power Press, 1995. 28 余建祖. 换热器原理与设计[M]. 北京: 北京航空航天大学出版社, 2005. Yu J Z. Heat Exchanger Principle and Design [M]. Beijing: Beihang University Press, 2005. 29 张峰, 吕震宙, 赵新攀. 基于序列 Shepard 插值的结构可靠性分析[J]. 机械工程学报, 2010, 46(10): 176-181. Zhang F, Lv Z Z, Zhao X P. Novel method based on sequence Shepard interpolation for structure reliability analysis [J]. Journal of Mechanical Engineering, 2010, 46(10): 176-181. 30 木拉提·吐尔德, 胡锡健. 拟蒙特卡洛方法中Halton序列的随机化及其改进[J]. 统计与决策, 2012, 24(372): 15-17. Mulati T, Hu X J. Randomization and improvement of Halton sequence in quasi-Monte Carlo method [J]. Statistics & Decision, 2012, 24(372): 15-17. 31 史楠楠, 诸立超. 不同Halton抽样方法在混合Logit模型中的比较[J]. 武汉理工大学学报（交通科学与工程版）, 2016, 40(5): 915-918. Shi N N, Chu L C. Comparison of different Halton simple methods in mixed Logit model [J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2016, 40(5): 915-918.
 [1] 何雪琼, 张会波, 禹国军, 石诚楠. 附加空气层的多层墙体热湿耦合非稳态传递模型及验证[J]. 化工学报, 2020, 71(S1): 114-119. [2] 滕达, 李铁林, 李昂, 安连锁, 沈国清, 张世平. 单通道陶瓷膜管低压透水性能实验分析[J]. 化工学报, 2020, 71(S1): 261-271. [3] 毛海涛, 王璐, 许志颖, 解万翠, 都健, 张磊. 基于分子表面电荷密度分布与机器学习的混合物设计方法研究[J]. 化工学报, 2020, 71(S1): 282-292. [4] 李爽, 李玉星, 王冬旭, 王权. 上倾管高黏油气两相流型及压降特性[J]. 化工学报, 2020, 71(3): 983-996. [5] 王湘月, 周晓君, 阳春华. 不确定条件下的湿法炼锌除铜过程机会约束优化控制[J]. 化工学报, 2020, 71(3): 1226-1233. [6] 刘丹, 成毅, 胡明月, 盛倩云, 周昊. 湿烟气工况下齿形螺旋翅片管束的性能研究[J]. 化工学报, 2020, 71(2): 575-583. [7] 高兴辉, 周帼彦, 涂善东. 缠绕管式换热器壳程强化传热性能影响因素分析[J]. 化工学报, 2019, 70(7): 2456-2471. [8] 周云龙, 常赫, 刘起超. 非线性振动下水平通道气液两相流动[J]. 化工学报, 2019, 70(7): 2512-2519. [9] 周闻, 王康松, 鄂承林, 卢春喜. 多旋臂气液旋流分离器压降特性试验[J]. 化工学报, 2019, 70(7): 2564-2573. [10] 徐国稳, 李坤, 蒋祎璠, 黄明骏, 房东旭, 蔡姗姗. 三类随机分形结构下干土壤有效热导率的介观研究[J]. 化工学报, 2019, 70(7): 2496-2502. [11] 尚良超, 陈晓东, 肖杰. 喷雾干燥颗粒表面形貌形成过程粗粒化模拟[J]. 化工学报, 2019, 70(6): 2153-2163. [12] 吴君强, 蒋文明, 杜仕林, 刘杨. 水平管路水环输送稠油减阻模拟实验[J]. 化工学报, 2019, 70(5): 1734-1741. [13] 段继海, 黄帅彪, 高昶, 陈阿强, 黄青山. 锥体开缝对水力旋流器固液分离性能的影响[J]. 化工学报, 2019, 70(5): 1823-1831. [14] 梁倩卿, 马学虎, 王凯, 春江, 郝婷婷, 兰忠, 王亚雄. 矩形截面弯曲型微通道气液两相Taylor流压降的研究[J]. 化工学报, 2019, 70(4): 1272-1281. [15] 韦攀, 喻家帮, 郭增旭, 杨肖虎, 何雅玲. 环形管填充金属泡沫强化相变蓄热可视化实验[J]. 化工学报, 2019, 70(3): 850-856.
Viewed
Full text

Abstract

Cited

Shared
Discussed
 [1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 . [2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 . [3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 . [4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 . [5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 . [6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 . [7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 . [8] 魏清渤，高楼军，付 峰，张玉琦，马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 . [9] 赵亚红，薛振华，王喜明，王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 . [10] 汪泽华，蔡卫权，郭蕾，童亚超，胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .