化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 166-171.doi: 10.11949/0438-1157.20191093

• 流体力学与传递现象 • 上一篇    下一篇

某型运输机飞行状态下冷凝器风道性能

张行1,3(),庞丽萍1(),王莹2,3   

  1. 1.北京航空航天大学航空科学与工程学院,北京 100191
    2.北京航空航天大学自动化科学与电气工程学院,北京 100191
    3.航空工业新乡航空工业(集团)有限公司,河南 新乡 453049
  • 收稿日期:2019-10-07 修回日期:2019-10-19 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 庞丽萍 E-mail:xiyuan86@163.com;pangliping@buaa.edu.cn
  • 作者简介:张行(1986—),男,博士研究生,高级工程师,xiyuan86@163.com

Performance of condenser duct under flight condition of a certain transport aircraft

Hang ZHANG1,3(),Liping PANG1(),Ying WANG2,3   

  1. 1.School of Aeronautics and Engineering, Beihang University, Beijing 100191, China
    2.School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
    3.Xinxiang Aviation Industry (Group) Co. , Ltd. , AVIC, Xinxiang 453049, Henan, China
  • Received:2019-10-07 Revised:2019-10-19 Online:2020-04-25 Published:2020-05-22
  • Contact: Liping PANG E-mail:xiyuan86@163.com;pangliping@buaa.edu.cn

摘要:

以某型运输机蒸发循环制冷系统用冷凝器为研究对象,分析了运输机与直升机、小型通航飞机蒸发循环制冷系统工作环境的区别,应用Star CCM+软件进行了仿真建模,通过对冷凝器风道的流体仿真分析,阐述了飞行状态下引起蒸发循环制冷系统压力故障的原因,在此基础上提出了冷凝器风道优化方案,并应用流体仿真分析的方法,验证了优化方案的有效性,最后在该运输机上进行了试飞验证。

关键词: 运输机, 传热, 冷凝器, 计算机模拟, 优化设计

Abstract:

The condenser used in evaporation circulation refrigeration system of a transport aircraft was studied. The difference of evaporation circulation refrigeration system working environment among transport aircraft, helicopter and small civil aviation aircraft was analyzed. Star CCM+ software was used for simulation modeling, through the fluid simulation analysis to the condenser air duct, the causes of the pressure failure of the evaporation circulation refrigeration system under the flight condition of the transport aircraft were described, the condenser air duct optimization scheme is put forward. Computational fluid dynamics (CFD) is used to verify the effectiveness of the optimization scheme. Finally, flight verification was carried out on the transport aircraft.

Key words: transport aircraft, heat transfer, condenser, computer simulation, optimal design

中图分类号: 

  • TQ 028.8

图1

飞机风道"

图2

飞机风道仿真模型"

图3

气流矢量图"

图4

地面状态下制冷系统压焓图"

图5

飞行状态下制冷系统压焓图"

图6

进风口格栅"

图7

出风口格栅"

图8

加装格栅后气流矢量图"

1 Dabm W J A. Technology horizons: a vision for science and technology during 2010-2030 [R]: AF/ST-TR-10-01-PR, 2010.
2 王子熙. 美国能量优化飞机设计方法及关键技术[J]. 航空科学技术, 2014, 25(5): 7-12.
Wang Z X. Design method and key technologies of US energy optimized aircraft [J]. Aeronautical Science and Technology, 2014, 25(5): 7-12.
3 Jonqueres M. Air cycle environmental control system with vapor cycle system: US005918472A [P]. 1999-07-06.
4 苏向辉, 许锋, 昂海松. 飞机环境控制系统的现状与未来[J]. 航空制造技术, 2002, (10): 40-42.
Su X H, Xu F, Ang H S. Present situation and future of aircraft environmental control system [J]. Aviation Manufacturing Technology, 2002, (10): 40-42.
5 Lehle W. Airbus A 330/340 environmental control system [R]. SAETechnical Paper, 1994.
6 Tipton R, Figliola R S, Ochterbeck J M. Thermal optimization of the ECS on an advanced aircraft with an emphasis on system efficiency and design methodology [R]. SAETechnical Paper, 1997.
7 Sprouse J. F-22 environmental control/thermal management fluid transport optimization [R]. SAE Paper 2000-01-2266, 2000.
8 Connell T C O, Lui C, Walia P, et al. A hybrid economy bleed, electric drive adaptive power and thermal management system for more electric aircraft [J]. SAE International Journal of Aerospace, 2010, 3: 168-172.
9 高峰, 袁修干. 高性能战斗机组合式制冷系统的仿真及性能[J]. 低温工程, 2009, (6): 62-67.
Gao F, Yuan X G. Simulation and performance of combined refrigeration system of high performance aircraft [J]. Cryogenics, 2009, (6): 62-67.
10 袁修干. 高性能军用机环境控制系统研究发展趋势的探讨[J]. 航空学报, 1999, (6): S1-S3.
Yuan X G. Developing trend discussion of environmental control systems of high performance military aircraft [J]. Acta Aeronautica et Astronautica Sinica, 1999, (6): S1-S3.
11 牟笑迎, 吴玉庭, 马重芳. 蒸气压缩制冷在高热流电子器件冷却中的应用[J]. 制冷与空调, 2009, (12): 9-11.
Mu X Y, Wu Y T, Ma C F. Application of vapor compression refrigeration to high heat flux microelectronics cooling [J]. Refrigeration and Air-conditioning, 2009, (12): 9-11.
12 李武奇, 唐伯清, 张均勇. 蒸汽压缩式制冷系统在航空中的应用[J]. 飞机设计, 2008,28(2): 73-76.
Li W Q, Tang B Q, Zhang J Y. Application of the steam compression refrigeration system in aviation [J]. Aircraft Design, 2008,28(2): 73-76
13 Ebadian M A, Lin C X. A review of high-heat-flux heat removal technologies [J]. Journal of Heat Transfer, 2011,133(11): 110801.
14 Chanekar M. Vapor cycle system for the F-22 raptor [R]. SAE Paper 2000-01-2268, 2000.
15 Ayaz M, Masud J. Computational analysis and characterization of cockpit environmental control system of a fighter aircraft in humid environment [J]. Applied Mechanics & Materials, 2014, 629: 263-269.
16 杨倩, 常士楠, 袁修干. 某型直升飞机环控系统制冷包设计[J]. 北京航空航天大学学报, 2002, 28(3): 283-286.
Yang Q, Chang S N, Yuan X G. Design of refrigeration package for environmental control system of a helicopter [J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(3): 283-286.
17 夏亮, 林贵平. 蒸发制冷技术在直升机的应用[J]. 直升机技术, 2009, 10(1): 21-23.
Xia L, Lin G P. Application of vapor-cycle refrigeration technology using on helicopter [J]. Helicopter Technique, 2009, 10(1): 21-23.
18 崔利, 薛浩. 直升机环控系统对比与展望[J]. 装备环境工程, 2010, 7(3): 62-65.
Cui L, Xue H. Comparison and prospect of helicopter environmental control system [J]. Equipment Environmental Engineering, 2010, 7(3): 62-65.
19 黄文捷. 直升机环控系统性能分析与研究[J]. 直升机技术, 2002, (1): 22-24.
Huang W J. Analysis and research on helicopter environmental control system performance [J]. Helicopter Technique, 2002, (1): 22-24
20 吴晓丽, 张兴娟, 袁修干. 直升机蒸气循环制冷系统技术现状与展望[J]. 中国安全科学学报, 2004, 14(6): 57-59.
Wu X L, Zhang X J, Yuan X G. Current status and perspective of cooling system of helicopter using steam cycling technique [J]. China Safety Science Journal, 2004, 14(6): 57-59.
21 彭孝天, 王苏明, 王晨臣. 直升机环境控制系统应用现状分析[J]. 海军航空工程学院学报, 2018, (2): 225-230.
Peng X T, Wang S M, Wang C C. Analysis of application status of helicopter environmental control system [J]. Journal of Naval Aeronautical and Astronautical University, 2018, (2): 225-230.
22 李武奇. 航空环控系统热载荷分析及设计方案优化探讨[D]. 南京: 东南大学, 2009.
Li W Q. Thermal load analysis and design optimization of aviation environmental control system [D]. Nanjing: Southeast University, 2009.
23 孙超. 机载蒸发循环仿真研究[D]. 南京: 南京航空航天大学, 2011.
Sun C. Numerical investigations of the vapor cycle system [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.
24 王黎静, 王昭鑫, 何雪丽. 大型客机驾驶舱气流热仿真及舒适性评价[J]. 北京航空航天大学学报, 2010, (12): 1436-1452.
Wang L J, Wang Z X, He X L. Airflow thermal simulation and comfortable evaluation of commercial airliner [J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, (12): 1436-1452.
25 Xu X W, Sun H H, Hua G S, et al. CFD analysis and optimization of automobile radiator based on STAR-CCM+ [J]. International Journal of Plant Engineering and Management. 2017, 22(4): 212-221.
26 张行, 周小康, 杨冰洁. 某民用直升机环控系统设计及仿真[C]//第31届全国直升机学术交流年会论文集.临汾: 中国航空学会直升机分会, 2015: 276-280.
Zhang H, Zhou X K, Yang B J. Environment control system design and simulation of a certain civil helicopter [C]//Proceedings of the 31st National Helicopter Academic Exchange Annual Conference. Linfen: China Aviation Society Helicopter Branch, 2015: 276-280.
27 陈超. 基于STAR CCM+的建筑物风场数值模拟[D]. 沈阳: 沈阳建筑大学, 2012.
Chen C. Based on the STAR CCM+ software building wind field numerical simulation [D]. Shenyang: Shenyang Jianzhu University, 2012.
28 阙雄才, 陈江平. 汽车空调实用技术[M]. 北京: 机械工业出版社, 2003: 173-176.
Que X C, Chen J P. Practical Technology of Automotive Air Conditioning [M]. Beijing: Machinery Industry Press, 2003: 173-176.
29 寿荣中, 何慧姗. 飞行器环境控制[M]. 北京: 北京航空航天大学出版社, 2004: 199-208.
Shou R Z, He H S. Environmental Control of Aircraft [M]. Beijing: Beihang University Press, 2004: 199-208.
30 贾玉红. 航空航天概论[M]. 第3版. 北京: 北京航空航天大学出版社. 2013: 226-232.
Jia Y H, Introduction to Aerospace [M]. 3rd ed. Beijing: Beihang University Press, 2013: 226-232.
[1] 李阳, 常守金, 胡海涛, 孙浩然, 赖展程, 刘善敏. 飞行器机载精密仪器温控系统性能的实验研究[J]. 化工学报, 2020, 71(S1): 77-82.
[2] 詹宏波, 郑文远, 文涛, 张大林. 微尺度通道内R134a的冷凝传热实验研究[J]. 化工学报, 2020, 71(S1): 83-89.
[3] 刘秀峰, 张诗, 周志杰, 郑浩, 王成泽, 时红远, 李梦杰. 换热器结构优化与换热性能评价指标研究[J]. 化工学报, 2020, 71(S1): 98-105.
[4] 刘子初, 全贞花, 赵耀华, 靖赫然, 姚孟良, 刘新. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128.
[5] 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157.
[6] 孙苏芮, 王德昌, 张金翠, 刘振, 李延辉. 膜蓄能器放能过程的传热传质特性分析[J]. 化工学报, 2020, 71(S1): 158-165.
[7] 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186.
[8] 陈玮玮, 方贤德, 鹿世化, 林福建, 张烨. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211.
[9] 王瑞琪, 高赞军, 杨华, 胡文超, 詹宏波. 机载冷源参数对蒸发循环系统性能的影响[J]. 化工学报, 2020, 71(S1): 212-219.
[10] 常健佩, 黄翔, 安苗苗, 李朝阳. 蒸发冷却冷水机组的原理、性能与适用性分析[J]. 化工学报, 2020, 71(S1): 236-244.
[11] 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37.
[12] 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321.
[13] 孟繁鑫, 孙佳宁, 周月, 高赞军, 程定斌. 飞机环控系统空气循环机仿真建模及试验校核[J]. 化工学报, 2020, 71(S1): 328-334.
[14] 周月, 张鹤林, 程定斌, 尹俊成. 典型空气循环制冷系统仿真研究[J]. 化工学报, 2020, 71(S1): 341-345.
[15] 张晨宇, 王宁, 徐洪涛, 张剑飞, 曹萌. 基于相变材料的太阳能PV/T系统性能[J]. 化工学报, 2020, 71(S1): 361-367.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .