化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 361-367.doi: 10.11949/0438-1157.20191092
Chenyu ZHANG1(),Ning WANG1,2,Hongtao XU1(
),Jianfei ZHANG2,Meng CAO1,Talkhoncheh Fariborz Karimi3
摘要:
利用相变材料(phase change material, PCM)的定温储放热特性,将脂肪酸类PCM填充在装有金属肋片的集热器中,对太阳能光伏(photovoltaic, PV)板进行温度调控,实验分析了不同间歇性热量调控策略下PV/T(photovoltaic/thermal)-PCM系统宏观性能。结果表明:PCM能有效缓解光伏电池的温度波动,但系统运行中PCM的温度分层现象较为严重,制约了其实际利用率;合理的热量调控策略对防止PV/T-PCM系统中光伏电池过热及提升系统性能至关重要,数据显示工况二(调控温度设为45℃,调控时长30 min)和工况三(调控温度设为50℃,调控时长30 min)在调控前后,其光电转换效率分别提升3.4%和2.6%;工况二对应的系统总效率为90.8%,工况三为84.45%,均在工况一(无调控)的基础上有显著提升。
中图分类号:
1 | Chandel S S, Agarwal T. Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems [J]. Renewable and Sustainable Energy Reviews, 2017, 73: 1342-1351. |
2 | Yuan Y P, Ouyang L P, Sun L L, et al. Effect of connection mode and mass flux on the energy output of a PVT hot water system [J]. Solar Energy, 2017, 158: 285-294. |
3 | Xu H T, Karimi F, Chen J, et al. Experimental investigation on a photovoltaic thermal solar system with a linear Fresnel lens [J]. Journal of Energy Engineering, 2018, 144(3): 04018012. |
4 | Bellos E, Said Z, Tzivanidis C. The use of nanofluids in solar concentrating technologies: a comprehensive review [J]. Journal of Cleaner Production, 2018, 196: 84-99. |
5 | Browne M C, Norton B, Mccormack S J. Phase change materials for photovoltaic thermal management [J]. Renewable and Sustainable Energy Reviews, 2015, 47: 762-782. |
6 | Thaib R, Rizal S, Riza M, et al. Beeswax as phase change material to improve solar panel s performance [J]. IOP Conference Series: Materials Science and Engineering, 2018, 308: 012024. |
7 | Khanna S, Reddy K S, Mallick T K. Optimization of finned solar photovoltaic phase change material (finned PV PCM) system [J]. International Journal of Thermal Sciences, 2018, 130: 313-322. |
8 | Joshi S S, Dhoble A S. Photovoltaic -thermal systems (PVT): technology review and future trends [J]. Renewable and Sustainable Energy Reviews, 2018, 92: 848-882. |
9 | Boumaaraf B, Touafek K, Ait-cheikh M S, et al. Comparison of electrical and thermal performance evaluation of a classical PV generator and a water glazed hybrid photovoltaic-thermal collector [J]. Mathematics and Computers in Simulation, 2020, 167: 176-193. |
10 | Dupeyrat P, Ménézo C,Fortuin S. Study of the thermal and electrical performances of PVT solar hot water system [J]. Energy & Buildings, 2014, 68: 751-755. |
11 | Aste N, Pero C D, Leonforte F, et al. Performance monitoring and modeling of an uncovered photovoltaic-thermal (PVT) water collector [J]. Solar Energy, 2016, 135: 551-568. |
12 | Herrando M, Markides C N, Hellgardt K. A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: system performance [J]. Applied Energy, 2014, 122: 88-309. |
13 | Franklin J C, Chandrasekar M. Performance enhancement of a single pass solar photovoltaic thermal system using staves in the trailing portion of the air channel [J]. Renewable Energy, 2019, 135: 248-258. |
14 | Gholampour M, Ameri M. Energy and exergy analyses of photovoltaic/thermal flat transpired collectors: experimental and theoretical study [J]. Applied Energy, 2016, 164: 837-856. |
15 | Abadeh A, Rejeb O, Sardarabadi M, et al. Economic and environmental analysis of using metal-oxides/water nanofluid in photovoltaic thermal systems (PVTs) [J]. Energy, 2018, 159: 1234-1243. |
16 | Al-Shamani A N, Sopian K, Mat S, et al. Performance enhancement of photovoltaic grid-connected system using PVT panels with nanofluid [J]. Solar Energy, 2017, 150: 38-48. |
17 | Al-Waeli A H A, Chaichan M T, Kazem H A, et al. Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors [J]. Energy Conversion and Management, 2017, 148: 963-973. |
18 | Al-Waeli A H A, Sopian K, Chaichan M T, et al. Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: an experimental study [J]. Energy Conversion and Management, 2017, 151: 693-708. |
19 | Al-Waeli A H A, Sopian K, Kazem H A, et al. Comparison of prediction methods of PV/T nanofluid and nano-PCM system using a measured dataset and artificial neural network [J]. Solar Energy, 2018, 162: 378-396. |
20 | Preet S. Water and phase change material based photovoltaic thermal management systems: a review [J]. Renewable and Sustainable Energy Reviews, 2018, 82: 791-807. |
21 | 凌空, 封永亮, 陶文铨. 带环状翅片管式相变储热器的数值模拟[J]. 工程热物理学报, 2012, 33(8): 1407-1410. |
Ling K, Feng Y L, Tao W Q. Numerical simulation of latent heat storage system with criculai-finned tube [J]. Journal of Engineering Thermophysics, 2012, 33(8): 1407-1410. | |
22 | Preet S, Bhushan B, Mahajan T. Experimental investigation of water based photovoltaic/thermal (PV/T) system with and without phase change material (PCM) [J]. Solar Energy, 2017, 155: 1104-1120. |
23 | Biwole P H, Eclache P, Kuznik F. Phase-change materials to improve solar panel s performance [J]. Energy and Buildings, 2013, 62: 59-67. |
24 | 纪珺, 刘宇飞, 任迎蕾, 等. Ba(OH)2·8H2O复合相变材料及其在太阳能光伏/热集热器上的释热特性[J]. 化工学报, 2017, 68(8): 2985-2990. |
Ji J, Liu Y F, Ren Y L, et al. Ba(OH)2·8H2O composite phase-change material and its heat release characteristics in solar photovoltaic/photo-thermal collectors [J]. CIESC Journal, 2017, 68(8): 2985-2990. | |
25 | Browne M C, Norton B, McCormack S J. Heat retention of a photovoltaic/thermal collector with PCM [J]. Solar Energy, 2016, 133: 533-548. |
26 | Hossain M S, Pandey A K, Selvaraj J, et al. Two side serpentine flow based photovoltaic-thermal-phase change materials (PVT-PCM) system: energy, exergy and economic analysis [J]. Renewable Energy, 2019, 136: 1320-1336. |
27 | Asgharian H, Baniasadi E. A review on modeling and simulation of solar energy storage systems based on phase change materials [J]. Journal of Energy Storage, 2019, 21: 186-201. |
28 | Atkin P, Farid M M. Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins [J]. Solar Energy, 2015, 114: 217-228. |
29 | Khanna S, Reddy K S, Mallick T K. Climatic behaviour of solar photovoltaic integrated with phase change material [J]. Energy Conversion and Management, 2018, 166: 590-601. |
30 | Al-Waeli A H A, Chaichan M T, Sopian K, et al. Modeling and experimental validation of a PVT system using nanofluid coolant and nano-PCM [J]. Solar Energy, 2019, 177: 178-191. |
[1] | 刘子初, 全贞花, 赵耀华, 靖赫然, 姚孟良, 刘新. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128. |
[2] | 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157. |
[3] | 孙苏芮, 王德昌, 张金翠, 刘振, 李延辉. 膜蓄能器放能过程的传热传质特性分析[J]. 化工学报, 2020, 71(S1): 158-165. |
[4] | 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171. |
[5] | 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186. |
[6] | 陈玮玮, 方贤德, 鹿世化, 林福建, 张烨. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211. |
[7] | 王瑞琪, 高赞军, 杨华, 胡文超, 詹宏波. 机载冷源参数对蒸发循环系统性能的影响[J]. 化工学报, 2020, 71(S1): 212-219. |
[8] | 田东民, 吴延鹏, 陈凤君. 基于纳米增强相变材料的铜-水热管传热性能分析[J]. 化工学报, 2020, 71(S1): 220-226. |
[9] | 常健佩, 黄翔, 安苗苗, 李朝阳. 蒸发冷却冷水机组的原理、性能与适用性分析[J]. 化工学报, 2020, 71(S1): 236-244. |
[10] | 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37. |
[11] | 杜伯尧, 全贞花, 侯隆澍, 赵耀华, 任海波. 新型光伏直膨式太阳能/空气能多能互补热泵性能[J]. 化工学报, 2020, 71(S1): 368-374. |
[12] | 马坤茹, 李雪峰, 李思琦, 高翠娟. 新型太阳能/空气能直膨式热泵与空气源热泵供热性能对比[J]. 化工学报, 2020, 71(S1): 375-381. |
[13] | 郭良, 李恒, 庞丽萍, 毛晓东, 赵竞全, 杨晓东. 高速运载器发电/制冷联合系统稳态性能[J]. 化工学报, 2020, 71(S1): 391-396. |
[14] | 郭栋才, 盛强, 杨鹏, 徐捷, 王泽, 杨波, 曹娇坤. 基于热电效应的高效环控系统[J]. 化工学报, 2020, 71(S1): 404-410. |
[15] | 马德胜, 庞丽萍, 毛晓东, 董素君. 机载综合环控系统的热管理[J]. 化工学报, 2020, 71(S1): 436-440. |
|