化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 361-367.doi: 10.11949/0438-1157.20191092

• 能源和环境工程 • 上一篇    下一篇

基于相变材料的太阳能PV/T系统性能

张晨宇1(),王宁1,2,徐洪涛1(),张剑飞2,曹萌1   

  1. 1.上海理工大学能源与动力工程学院,上海市动力工程多相流动与传热重点实验室,上海 200093
    2.西安交通大学 热流科学与工程教育部重点实验室,陕西 西安 710049
    3.Isfahan Saman Energy Company, Isfahan, Iran
  • 收稿日期:2019-10-07 修回日期:2019-10-22 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 徐洪涛 E-mail:chenyuz0131@163.com;htxu@usst.edu.cn
  • 作者简介:张晨宇(1995—),女,硕士研究生,chenyuz0131@163.com
  • 基金资助:
    国家重点研发计划项目(2018YFF0216003);上海市国际科技合作基金项目18160743600

Photovoltaic and thermal performance of solar PV/T system with phase change material

Chenyu ZHANG1(),Ning WANG1,2,Hongtao XU1(),Jianfei ZHANG2,Meng CAO1,Talkhoncheh Fariborz Karimi3   

  1. 1.Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
    2.MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
    3.Isfahan Saman Energy Company, Isfahan, Iran
  • Received:2019-10-07 Revised:2019-10-22 Online:2020-04-25 Published:2020-05-22
  • Contact: Hongtao XU E-mail:chenyuz0131@163.com;htxu@usst.edu.cn

摘要:

利用相变材料(phase change material, PCM)的定温储放热特性,将脂肪酸类PCM填充在装有金属肋片的集热器中,对太阳能光伏(photovoltaic, PV)板进行温度调控,实验分析了不同间歇性热量调控策略下PV/T(photovoltaic/thermal)-PCM系统宏观性能。结果表明:PCM能有效缓解光伏电池的温度波动,但系统运行中PCM的温度分层现象较为严重,制约了其实际利用率;合理的热量调控策略对防止PV/T-PCM系统中光伏电池过热及提升系统性能至关重要,数据显示工况二(调控温度设为45℃,调控时长30 min)和工况三(调控温度设为50℃,调控时长30 min)在调控前后,其光电转换效率分别提升3.4%和2.6%;工况二对应的系统总效率为90.8%,工况三为84.45%,均在工况一(无调控)的基础上有显著提升。

关键词: 太阳能, PV/T-PCM 系统, 传热, 相变材料, 调控策略

Abstract:

This paper based on the phase change heat storage and release characteristics of phase change material (PCM). The fatty acid PCM is filled in a collector equipped with metal fins to regulate the temperature of the photovoltaic (PV) plate. The performance of photovoltaic/thermal-PCM (PV/T-PCM) system under different intermittent thermal regulation strategy is analyzed. Results show that PCM can effectively alleviate the temperature fluctuation of PV cells. However, the temperature stratification phenomenon of PCM is still serious which restricts the utilization rate of PCM. A reasonable thermal regulation strategy plays an important role in preventing overheating of PV cells in PV/T-PCM systems and improving system performance. The data shows that the PV conversion efficiency can be increased by 3.4% and 2.6% respectively with the control of the Case 2 (control temperature is set to 45℃, the regulation time is 30 min) and the Case 3 (control temperature is set to 50℃, the regulation time is 30 min). On the other hand, the total efficiencies of the system in Case 2 and Case 3 are 90.8% and 84.45%, which are significantly improved compared with Case 1 (no regulation).

Key words: solar energy, PV/T-PCM system, heat transfer, phase change material, regulation strategy

中图分类号: 

  • TK 123

图1

实验系统流程"

表1

实验工况"

实验工况实验时间调控标准调控时长水流量
工况一(2018-7-13)9:30~14:30
工况二(2018-10-1)10:00~15:00TⅠ-1=45℃30 min1.7 L·min-1
工况三(2018-10-2)10:00~15:00TⅠ-1=50℃30 min1.7 L·min-1

图2

集热器结构及热电偶位置布置"

图3

工况一中太阳辐射密度及实验测量结果"

表2

PCM的热物性"

参数熔点/℃

密度/

(kg·m-3)

比热容/

(kJ·kg-1·℃-1)

热导率/

(W·m-1·℃-1)

潜热/

(kJ·kg-1)

固态379202.20.25216
液态8402.60.15

表3

测试仪器"

测量仪器型号测量范围
T型热电偶TT-T-30-SLE-120~150℃
大气温度传感器YGC-QW-24 V-A1-20~50℃
辐射传感器YGC-TBQ-24 V-A10~2000 W·m-2
循环泵ORS20-16G-320 W最大流量110 L·min-1
涡轮流量计YYLED-DN2040~250 L·h-1
电子负载IT8511A+
数据采集仪NI 9213, NI 9203

图4

工况一中PCM的温度变化及熔化时的相变界面"

图5

光伏电池的温度变化"

表4

PV/T-PCM系统的热、电效率及系统的总效率"

实验工况ηth /%ηel /%ηtotal /%
调控前调控后平均
工况一69.812.282.0
工况二78.711.912.312.190.8
工况三72.611.712.011.8584.45
1 Chandel S S, Agarwal T. Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems [J]. Renewable and Sustainable Energy Reviews, 2017, 73: 1342-1351.
2 Yuan Y P, Ouyang L P, Sun L L, et al. Effect of connection mode and mass flux on the energy output of a PVT hot water system [J]. Solar Energy, 2017, 158: 285-294.
3 Xu H T, Karimi F, Chen J, et al. Experimental investigation on a photovoltaic thermal solar system with a linear Fresnel lens [J]. Journal of Energy Engineering, 2018, 144(3): 04018012.
4 Bellos E, Said Z, Tzivanidis C. The use of nanofluids in solar concentrating technologies: a comprehensive review [J]. Journal of Cleaner Production, 2018, 196: 84-99.
5 Browne M C, Norton B, Mccormack S J. Phase change materials for photovoltaic thermal management [J]. Renewable and Sustainable Energy Reviews, 2015, 47: 762-782.
6 Thaib R, Rizal S, Riza M, et al. Beeswax as phase change material to improve solar panel s performance [J]. IOP Conference Series: Materials Science and Engineering, 2018, 308: 012024.
7 Khanna S, Reddy K S, Mallick T K. Optimization of finned solar photovoltaic phase change material (finned PV PCM) system [J]. International Journal of Thermal Sciences, 2018, 130: 313-322.
8 Joshi S S, Dhoble A S. Photovoltaic -thermal systems (PVT): technology review and future trends [J]. Renewable and Sustainable Energy Reviews, 2018, 92: 848-882.
9 Boumaaraf B, Touafek K, Ait-cheikh M S, et al. Comparison of electrical and thermal performance evaluation of a classical PV generator and a water glazed hybrid photovoltaic-thermal collector [J]. Mathematics and Computers in Simulation, 2020, 167: 176-193.
10 Dupeyrat P, Ménézo C,Fortuin S. Study of the thermal and electrical performances of PVT solar hot water system [J]. Energy & Buildings, 2014, 68: 751-755.
11 Aste N, Pero C D, Leonforte F, et al. Performance monitoring and modeling of an uncovered photovoltaic-thermal (PVT) water collector [J]. Solar Energy, 2016, 135: 551-568.
12 Herrando M, Markides C N, Hellgardt K. A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: system performance [J]. Applied Energy, 2014, 122: 88-309.
13 Franklin J C, Chandrasekar M. Performance enhancement of a single pass solar photovoltaic thermal system using staves in the trailing portion of the air channel [J]. Renewable Energy, 2019, 135: 248-258.
14 Gholampour M, Ameri M. Energy and exergy analyses of photovoltaic/thermal flat transpired collectors: experimental and theoretical study [J]. Applied Energy, 2016, 164: 837-856.
15 Abadeh A, Rejeb O, Sardarabadi M, et al. Economic and environmental analysis of using metal-oxides/water nanofluid in photovoltaic thermal systems (PVTs) [J]. Energy, 2018, 159: 1234-1243.
16 Al-Shamani A N, Sopian K, Mat S, et al. Performance enhancement of photovoltaic grid-connected system using PVT panels with nanofluid [J]. Solar Energy, 2017, 150: 38-48.
17 Al-Waeli A H A, Chaichan M T, Kazem H A, et al. Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors [J]. Energy Conversion and Management, 2017, 148: 963-973.
18 Al-Waeli A H A, Sopian K, Chaichan M T, et al. Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: an experimental study [J]. Energy Conversion and Management, 2017, 151: 693-708.
19 Al-Waeli A H A, Sopian K, Kazem H A, et al. Comparison of prediction methods of PV/T nanofluid and nano-PCM system using a measured dataset and artificial neural network [J]. Solar Energy, 2018, 162: 378-396.
20 Preet S. Water and phase change material based photovoltaic thermal management systems: a review [J]. Renewable and Sustainable Energy Reviews, 2018, 82: 791-807.
21 凌空, 封永亮, 陶文铨. 带环状翅片管式相变储热器的数值模拟[J]. 工程热物理学报, 2012, 33(8): 1407-1410.
Ling K, Feng Y L, Tao W Q. Numerical simulation of latent heat storage system with criculai-finned tube [J]. Journal of Engineering Thermophysics, 2012, 33(8): 1407-1410.
22 Preet S, Bhushan B, Mahajan T. Experimental investigation of water based photovoltaic/thermal (PV/T) system with and without phase change material (PCM) [J]. Solar Energy, 2017, 155: 1104-1120.
23 Biwole P H, Eclache P, Kuznik F. Phase-change materials to improve solar panel s performance [J]. Energy and Buildings, 2013, 62: 59-67.
24 纪珺, 刘宇飞, 任迎蕾, 等. Ba(OH)2·8H2O复合相变材料及其在太阳能光伏/热集热器上的释热特性[J]. 化工学报, 2017, 68(8): 2985-2990.
Ji J, Liu Y F, Ren Y L, et al. Ba(OH)2·8H2O composite phase-change material and its heat release characteristics in solar photovoltaic/photo-thermal collectors [J]. CIESC Journal, 2017, 68(8): 2985-2990.
25 Browne M C, Norton B, McCormack S J. Heat retention of a photovoltaic/thermal collector with PCM [J]. Solar Energy, 2016, 133: 533-548.
26 Hossain M S, Pandey A K, Selvaraj J, et al. Two side serpentine flow based photovoltaic-thermal-phase change materials (PVT-PCM) system: energy, exergy and economic analysis [J]. Renewable Energy, 2019, 136: 1320-1336.
27 Asgharian H, Baniasadi E. A review on modeling and simulation of solar energy storage systems based on phase change materials [J]. Journal of Energy Storage, 2019, 21: 186-201.
28 Atkin P, Farid M M. Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins [J]. Solar Energy, 2015, 114: 217-228.
29 Khanna S, Reddy K S, Mallick T K. Climatic behaviour of solar photovoltaic integrated with phase change material [J]. Energy Conversion and Management, 2018, 166: 590-601.
30 Al-Waeli A H A, Chaichan M T, Sopian K, et al. Modeling and experimental validation of a PVT system using nanofluid coolant and nano-PCM [J]. Solar Energy, 2019, 177: 178-191.
[1] 刘子初, 全贞花, 赵耀华, 靖赫然, 姚孟良, 刘新. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128.
[2] 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157.
[3] 孙苏芮, 王德昌, 张金翠, 刘振, 李延辉. 膜蓄能器放能过程的传热传质特性分析[J]. 化工学报, 2020, 71(S1): 158-165.
[4] 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171.
[5] 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186.
[6] 陈玮玮, 方贤德, 鹿世化, 林福建, 张烨. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211.
[7] 王瑞琪, 高赞军, 杨华, 胡文超, 詹宏波. 机载冷源参数对蒸发循环系统性能的影响[J]. 化工学报, 2020, 71(S1): 212-219.
[8] 田东民, 吴延鹏, 陈凤君. 基于纳米增强相变材料的铜-水热管传热性能分析[J]. 化工学报, 2020, 71(S1): 220-226.
[9] 常健佩, 黄翔, 安苗苗, 李朝阳. 蒸发冷却冷水机组的原理、性能与适用性分析[J]. 化工学报, 2020, 71(S1): 236-244.
[10] 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37.
[11] 杜伯尧, 全贞花, 侯隆澍, 赵耀华, 任海波. 新型光伏直膨式太阳能/空气能多能互补热泵性能[J]. 化工学报, 2020, 71(S1): 368-374.
[12] 马坤茹, 李雪峰, 李思琦, 高翠娟. 新型太阳能/空气能直膨式热泵与空气源热泵供热性能对比[J]. 化工学报, 2020, 71(S1): 375-381.
[13] 郭良, 李恒, 庞丽萍, 毛晓东, 赵竞全, 杨晓东. 高速运载器发电/制冷联合系统稳态性能[J]. 化工学报, 2020, 71(S1): 391-396.
[14] 郭栋才, 盛强, 杨鹏, 徐捷, 王泽, 杨波, 曹娇坤. 基于热电效应的高效环控系统[J]. 化工学报, 2020, 71(S1): 404-410.
[15] 马德胜, 庞丽萍, 毛晓东, 董素君. 机载综合环控系统的热管理[J]. 化工学报, 2020, 71(S1): 436-440.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .