化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 142-148.doi: 10.11949/0438-1157.20191091

• 流体力学与传递现象 • 上一篇    下一篇

置换通风模式下多元对流室内热与污染物输运

王磊(),赵福云(),蔡阳,汪维伟,王云鹤,杨国彪   

  1. 武汉大学动力与机械学院,湖北 武汉 430072
  • 收稿日期:2019-10-07 修回日期:2019-11-18 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 赵福云 E-mail:saintwl@whu.edu.cn;fyzhao@whu.edu.cn
  • 作者简介:王磊(1993—),男,博士研究生,saintwl@whu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51778504);国家重点研发计划“绿色建筑及建筑工业化”专项项目(2018YFC0705201);国家自然科学基金-中国核工业集团有限公司核技术创新联合基金项目(U1867221)

Combined convective heat and pollutant removals in enclosures with different vented slots

Lei WANG(),Fuyun ZHAO(),Yang CAI,Weiwei WANG,Yunhe WANG,Guobiao YANG   

  1. School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, Hubei, China
  • Received:2019-10-07 Revised:2019-11-18 Online:2020-04-25 Published:2020-05-22
  • Contact: Fuyun ZHAO E-mail:saintwl@whu.edu.cn;fyzhao@whu.edu.cn

摘要:

通过数值模拟的手段研究不同进出口布置方式对置换通风模式下混合对流开口腔内热质输运过程的影响,并且利用流函数、热函数和质函数深入研究与揭示开口腔内热与气态污染物的输运过程与机理,系统分析了不同控制参数对开口腔内的气体流动结构和热质输运能力的影响。结果表明不同的进出口布置方式在开口腔内热和污染物的输运及其室内扩散范围上展现了相反的双重效果:进出口布置在两侧的方式具有更大的热与污染物输运能力;进口在两侧底部,出口位于顶部的布置方式在开口腔内具有更小的热与污染物扩散半径。研究结果对室内热与污染物排放和控制以及电子器件冷却有一定的借鉴意义。

关键词: 数值模拟, 层流, 传递过程, 置换通风, 进出口布置, 开口通风腔室

Abstract:

A numerical investigation of displacement ventilation on a heated and polluted strip within a partially open enclosure, having various locations of airflow inlet and outlet, is considered. The effects of different governing parameters on the fluid flow, heat and mass transfer were analyzed systematically. Results illustrated that the different arrangements of airflow inlet and outlet exhibit the dual effects on heat and mass transports and the radiuses of heat and mass dissipation within the enclosure. Both heat and mass transfer rates present larger values for the locations of inlet and outlet placed at the vertical sidewalls while they presents smaller radiuses of heat and mass dissipations for inlet and outlet placed at the two vertical and the top sidewalls, respectively. Results could be beneficial for heat and pollutant removals from the electronic boxes or building enclosures.

Key words: numerical simulation, laminar flow, transport processes, displacement ventilation, locations of inlet and outlet, slot ventilated enclosure

中图分类号: 

  • TU 13

图1

置换通风模式A"

图2

置换通风模式B"

图3

置换通风模式A下流线、等温线、等浓度线、热线和质线分布(从上至下)"

图4

置换通风模式B下流线、等温线、等浓度线、热线和质线分布(从上至下)"

图5

不同置换通风模式下Ar对全局Nu的影响"

图6

不同置换通风模式下Ar对全局Sh的影响"

图7

不同置换通风模式下Ar对腔室内最高温度的影响"

图8

不同置换通风模式下Ar对腔室内最大污染物浓度的影响"

1 Papanicolaou E, Jaluria Y. Mixed convection form an isolated heat source in a rectangular enclosure [J]. Numer. Heat Tr. A - Appl., 1990, 18(4): 427-461.
2 Tsu T H, Hsu P T, How S P. Mixed convection in a partially divided rectangular enclosure [J]. Numer. Heat Tr. A - Appl., 1997, 31(6): 655-683.
3 Raji A, Hasnaoui M. Mixed convection heat transfer in a rectangular cavity ventilated and heated from the side [J]. Numer. Heat Tr. A-Appl., 1998, 33(5): 533-548.
4 Manca O, Nardini S, Khanafer K. Experimental investigation of mixed convection in a channel with an open cavity [J]. Exp. Heat Transfer., 2006, 19(1): 53-68.
5 Lee H, Awbi H B. Effect of internal partitioning on indoor air quality of rooms with mixing ventilation — basic study [J]. Build. Environ., 2004, 39(2): 127-141.
6 Bilgenm E, Muftuoglu A. Cooling strategy by mixed convection of a discrete heated at its optimum position in a square cavity with ventilation ports [J]. Int. Commun. Heat Mass Transfer, 2008, 35(5): 545-550.
7 Stiriba Y, Grau F X, Ferre J A, et al. A numerical study of three-dimensional laminar mixed convection past an open cavity [J]. Int. J. Heat Mass Transfer, 2010, 53(21/22): 4797-4808.
8 Liu D, Zhao F Y, Wang H Q. Passive heat and moisture removal from a natural vented enclosure with a massive wall [J]. Energy, 2011, 36(5): 2867-2882.
9 Papanicolaou E, Jaluria Y. Mixed convection from a localized heat source in a cavity with conducting walls: a numerical study [J]. Numer. Heat Tr. A - Appl., 1993, 23(4): 463-484.
10 Singh S, Sharif M A R. Mixed convection cooling of a rectangular cavity with inlet and exit openings on differentially heated side walls [J]. Numer. Heat Tr. A - Appl., 2003, 44(3): 233-253.
11 Tmartnhad I, Alami M E, Najian M, et al. Numerical investigation on mixed convection flow in a trapezoidal cavity heated from below [J]. Energ. Convers. Manage., 2008, 49(11): 3205-3210.
12 Arce J, Xaman J, Alvarez G. Numerical study of mixed convection and conduction in a 2-D square ventilated cavity with an inlet at the vertical glazing wall and outlet at the top surfaces [J]. Heat and Mass Transfer, 2011, 47(2): 223-236.
13 Rahman M M, Oztop H F, Mekhilef S, et al. Simulation of unsteady heat and mass transport with heatline and massline in a partially heated open cavity [J]. Appl. Math. Model, 2015, 39(5/6): 1597-1615.
14 Fontana E, Capeletto C A, Silva A, et al. Numerical analysis of mixed convection in partially open cavities heated from below [J]. Int. J. Heat Mass Transfer, 2015, 81(1): 829-845.
15 Yoo J S. Dual steady solutions in natural convection between horizontal concentric cylinders [J]. Int. J. Heat Fluid Fl., 1996, 17(6): 587-593.
16 Yang L, Xu P, Li Y. Nonlinear dynamic analysis of natural ventilation in a two-zone building: Part A — Theoretical analysis [J]. HVAC&R Research, 2006, 12(2): 231-255.
17 Alloui Z, Dufau L, Beji H, et al. Multiple steady states in a porous enclosure partially heated and fully salted from below [J]. Int. J. Therm. Sci., 2009, 48(3): 521-534.
18 Zhao F Y, Rank E, Liu D, et al. Dual steady transports of heat and moisture in a vent enclosure with all round states of ambient air [J]. Int. J. Heat Mass Transfer, 2012, 55(23/24): 6979-6993.
19 Zhao F Y, Liu D, Tang G F. Multiple steady fluid flows in a slot-ventilated enclosure [J]. Int. J. Heat Fluid Fl., 2008, 29(5): 1295-1308.
20 Liu D, Zhao F Y, Tang G F. Non-unique convection in a three-dimensional slot-vented cavity with opposed jets [J]. Int. J. Heat Mass Transfer, 2010, 53(5/6): 1044-1056.
21 Ren X H, Hu J T, Liu D, et al. Combined convective heat and airborne pollutant removals in a slot vented enclosure under different flow schemes: parametric investigations and non unique flow solutions [J]. Appl. Therm. Eng., 2016, 94(1): 159-169.
22 Zhang D D, Cai Y, Liu D, et al. Dual steady flow solutions of heat and pollutant removal from a slot ventilated welding enclosure containing a bottom heating source [J]. Int. J. Heat Mass Transfer, 2019, 132(1): 11-24.
23 Muftuoglu A, Bilgen E. Natural convection in an open square cavity with discrete heaters at their optimized positions [J]. Int. J. Therm. Sci., 2008, 47(4): 369-377.
24 Bilgen E, Oztop H. Natural convection heat transfer in partially open inclined square cavities [J]. Int. J. Heat Mass Transfer, 2005, 48(8): 1470-1479.
25 Zhang J H, Zhang D D, Liu D, et al. Free vent boundary conditions for thermal buoyancy driven laminar flows inside open building enclosures [J]. Build Environ., 2017, 111(1): 10-23.
26 Kimura S, Bejan A. The “heatline” visualization of convective heat transfer [J]. J. Heat Transfer, 1983, 105(4): 916-919.
27 Zhao F Y, Liu D, Tang G F. Application issues of the streamline, heatline, and massline for conjugate heat and mass transfer [J]. Int. J. Heat Mass Transfer, 2007, 50(1/2): 320-334.
28 Patankar S V. Numerical Heat Transfer and Fluid Flow [M]. New York: Hemisphere., 1980: 120-129.
29 Zhao F Y, Liu D, Tang G F. Conjugate heat transfer in sqaure enclosures [J]. Heat Mass Transfer, 2007, 43(9): 907-922.
30 Liu D, Zhao F Y, Tang G F. Conjugate heat transfer in an enclosure with a centered conducting body imposed sinusoidal temperature profiles on one side [J]. Numer. Heat Tr. A - Appl., 2008, 53(2): 204-223.
[1] 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157.
[2] 王刚, 赵琰. 土壤源热泵供暖间歇运行时间的计算分析[J]. 化工学报, 2020, 71(S1): 430-435.
[3] 陈胡炜, 吉华, 冯东林, 李倩, 陈志. 基于多楔现象的微孔端面机械密封泄漏率分析及孔形设计[J]. 化工学报, 2020, 71(4): 1723-1733.
[4] 王金红, 陈志, 刘凡, 李建明. 密封环支撑边界条件对机械密封端面变形的影响[J]. 化工学报, 2020, 71(4): 1744-1753.
[5] 王少雄, 李玉星, 刘翠伟, 梁杰, 李安琪, 薛源. 水下输气管道泄漏扩散特性模拟研究[J]. 化工学报, 2020, 71(4): 1898-1911.
[6] 车健, 江锦波, 李纪云, 彭旭东, 马艺, 王玉明. 节流孔出气模式对静压干气密封稳态性能影响[J]. 化工学报, 2020, 71(4): 1734-1743.
[7] 陈汇龙, 桂铠, 韩婷, 谢晓凤, 陆俊成, 赵斌娟. 上游泵送机械密封润滑膜固体颗粒沉积特性研究[J]. 化工学报, 2020, 71(4): 1712-1722.
[8] 谭畯坤, 刘玉东, 耿世超, 陈兵, 童明伟. 真空探针冷冻和复温性能实验测试及数值模拟[J]. 化工学报, 2020, 71(4): 1440-1449.
[9] 田瑞超, 王淑彦, 邵宝力, 李好婷, 王玉琳. 基于粗糙颗粒动理学流化床内颗粒与幂律流体两相流动特性的数值模拟研究[J]. 化工学报, 2020, 71(4): 1528-1539.
[10] 宋祺, 杨智, 陈颖, 罗向龙, 陈健勇, 梁颖宗. 局部几何构型对聚焦流微通道内液滴生成特性的影响[J]. 化工学报, 2020, 71(4): 1540-1553.
[11] 王修纲, 吴裕凡, 郭潞阳, 路庆华, 叶晓峰, 曹育才. 聚合釜传热性能的实验研究及数值模拟[J]. 化工学报, 2020, 71(2): 584-593.
[12] 周海军, 熊源泉. 补充风对水平管高压密相气力输送影响的模拟研究[J]. 化工学报, 2020, 71(2): 602-613.
[13] 刘稳文, 吕梦芸, 李学艺, 黄璟, 池立勋, 闫锋, 张劲军. 含蜡油凝点判断准则的力学涵义[J]. 化工学报, 2020, 71(2): 566-574.
[14] 刘丹, 成毅, 胡明月, 盛倩云, 周昊. 湿烟气工况下齿形螺旋翅片管束的性能研究[J]. 化工学报, 2020, 71(2): 575-583.
[15] 徐阳, 郑章靖, 李明佳. 管壳式相变储热器性能快速预测研究[J]. 化工学报, 2019, 70(S2): 237-243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .