化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 436-440.doi: 10.11949/0438-1157.20191083
Desheng MA1(),Liping PANG1(
),Xiaodong MAO2,Sujun DONG1
摘要:
利用燃油作为主要热沉,同时引入液体PAO与R134a作为辅助热沉,提出了一种环控系统热管理的新方案。空气压缩制冷子系统与高温PAO子系统以空气-PAO换热器为连接点,耦合为座舱与电子舱室1的热管理子系统;低温PAO子系统与蒸发压缩制冷循环以蒸发器为连接点,耦合为电子舱室2的热管理子系统。采用数学理论计算与计算机建模仿真研究相结合的方法,建立了空气-液体换热器、液-液蒸发器/冷凝器等主要元件的仿真模型,对环控系统进行性能分析。结果表明,在一定的引气温度和压力条件下,燃油作为主要热沉可以吸收大量的热量,同时各子系统的热量互补能够满足驾驶舱与电子舱的温度控制,保证其稳定、高效的运行。
中图分类号:
1 | Huang J, Yao W X. Coupled fluid-structural thermal numerical methods for thermal protection system [J]. AAIA Journal, 2019, 57(8): 3630-3638. |
2 | Daniel B. Integration of exergy analysis into model-based design and evaluation of aircraft environmental control system [J]. Energy, 2017, 137: 739-751. |
3 | Han Y, Zhang X J. Experimental and theoretical study on a novel energy-saving ECS for commercial airliners [J]. Applied Thermal Engineering, 2017, 127: 1372-1381. |
4 | Brasseur A. Inside the 747-8 new environmental control system [J]. Aeromagazine, 2012, 1: 19-25. |
5 | 寿荣中, 何慧珊. 飞行器环境控制[M]. 北京: 北京航空航天大学出版社, 2004: 142-176. |
Shou R Z, He H S. Aircraft Environmental Control [M]. Beijing: Beihang University Press, 2004: 142-176. | |
6 | Cui W, Wu T. Passenger thermal comfort and behavior: a field investigation in commercial aircraft cabins [J]. Indoor Air, 2017, 27(1): 94-103. |
7 | Yang Y C, Gao Z C. Power optimization of the environmental control system for the civil more electric aircraft [J]. Energy, 2019, 172: 196-206. |
8 | Edwards H A, Hardy D D. Aircraft cost index and future of carbon emission from air travel [J]. Applied Energy, 2016, 164: 553-562. |
9 | Baharozu E, Soykan G. Future aircraft concept in terms of energy efficiency and environmental factors [J]. Energy, 2017, 140: 1368-1377. |
10 | Grande I P, Leo T J. Optimization of a commercial aircraft environmental control system [J]. Applied Thermal Engineering, 2002, 22: 1885-1904. |
11 | Ordonez J C, Bejan A. Minimum power requirement for environmental control of aircraft [J]. Energy, 2003, 28: 1183-1202. |
12 | Zhao H, Hou Y, Zhu Y, et al. Experimental study on the performance of an aircraft environmental control system [J]. Applied Thermal Engineering, 2009, 29: 3284-3288. |
13 | 朱春玲. 飞行器环境控制与安全救生 [M]. 北京: 北京航空航天大学出版社, 2006: 165-176. |
Zhu C L. Aircraft Environment Control and Safety Life Saving [M]. Beijing: Beihang University Press, 2006: 165-176. | |
14 | Ab H, Elizabeth D, Jay N. Aircraft skin-cooling system for thermal management of onboard high-power electronics [J]. Journal of Thermophysics and Heat Transfer, 1999, 13(4): 529-536. |
15 | German B J. Tank heating model for aircraft fuel thermal systems with recirculation [J]. Journal of Propulsion and Power, 2012, 28(1): 204-210. |
16 | Zhang T, Yin S, Wang S. An under-aisle air distribution system facilitating humidification of commercial aircraft cabins [J]. Building Environment, 2010, 45: 907-917. |
17 | Li X, Chen Q, Hao J H, et al. Heat current method for analysis and optimization of a refrigeration system for aircraft environmental control system [J]. International Journal of Refrigeration, 2019, 106: 163-180. |
18 | Zheng D, Cui Y. Study on the fast air heating method for the testbed of the environmental control system of the aircraft [J]. Journal of Physics Conference Series, 2018, 1060(1): 12-72. |
19 | Yin H S, Shen X. Modeling dynamic responses of aircraft environmental control systems by coupling with cabin thermal environment simulations [J]. Building Simulation, 2016, 9(4): 459-468. |
20 | 常士楠, 袁美名, 袁修干. 飞机机载综合热管理系统稳态仿真[J]. 北京航空航天大学学报, 2008, 34(7): 821-824. |
Chang S N, Yuan M M, Yuan X G. Numerical simulation of aircraft integrated thermal management system in steady working condition [J]. Journal of Beihang University, 2008, 34(7): 821-824. | |
21 | Jiang H S, Dong S J. Energy efficiency analysis of electric and conventional environmental control system on commercial aircraft [C]// 2016 IEEE/CSAA International Conference on Aircraft Utility Systems. Beijing: Beihang University Press, 2016: 973-978. |
22 | Shah S, Liu G, Greatrix D R. Modelling simulation and experimental evaluation of a crossflow heat exchanger for an aircraft environmental control system [J]. Proceedings of the Institution of Mechanical Engineers, 2010, 224(5): 613-623. |
23 | Leo T J, Isabel P G. A thermoeconomic analysis of a commercial aircraft environmental control system [J]. Applied Thermal Engineering, 2005, 25(2): 309-325. |
24 | Vargas J V C, Bejan A. Integrative thermodynamic optimization of the environmental control system of an aircraft [J]. International Journal of Heat and Mass Transfer, 2001, 44(20): 3907-3917. |
25 | Li H B, Dong X M, Li T T, et al. Optimization analysis of aircraft environmental control system based on minimum entropy generation [J]. Computer Engineering, 2011, 37(23): 273-275. |
26 | Li H B, Dong X M, Li T T, et al. Minimum entropy generation analysis of aircraft environmental control system [J]. Journal of Applied Sciences, 2011, 29(3): 325-330. |
27 | Yuan W X, Li Y X, Wang C J. Comparison study of membrane dehumidification aircraft environmental control systems [J]. Journal of Aircraft, 2012, 49(3): 815-821. |
28 | Perhinschi M G, Napolitano M R, Campa G. A simulation environment for design and testing of aircraft adaptive fault-tolerant control systems [J]. Aircraft Engineering and Aerospace Technology: An International Journal, 2008, 80(6): 620-632. |
29 | Wen T, Zhan H B, Zhang D L, et al. Development of evaporation pressure-capacity control strategy for aircraft vapor cycle system [J]. International Journal of Refrigeration, 2017, 83: 14-22. |
30 | Cao Q, Liu Y D, Liu W, et al. Experimental study of particle deposition in the environmental control systems of commercial airliners [J]. Building and Environment, 2016, 96: 62-71. |
31 | Petley D H, Jones S C. Thermal management for a Mach 5 cruise aircraft using endothermic fuel [J]. Journal of Aircraft, 1992, 29(3): 384-389. |
[1] | 刘子初, 全贞花, 赵耀华, 靖赫然, 姚孟良, 刘新. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128. |
[2] | 裴后举, 蒋彦龙, 施红, 崔永龙, 陈常栋, 钱晓辉. 基于M-L湍流模型的浮空器强迫对流换热[J]. 化工学报, 2020, 71(S1): 136-141. |
[3] | 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157. |
[4] | 孙苏芮, 王德昌, 张金翠, 刘振, 李延辉. 膜蓄能器放能过程的传热传质特性分析[J]. 化工学报, 2020, 71(S1): 158-165. |
[5] | 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171. |
[6] | 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186. |
[7] | 罗坤, 毛晓东, 庞丽萍. 新型直升机热泵空调系统驾驶舱热控性能[J]. 化工学报, 2020, 71(S1): 187-193. |
[8] | 陈玮玮, 方贤德, 鹿世化, 林福建, 张烨. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211. |
[9] | 王瑞琪, 高赞军, 杨华, 胡文超, 詹宏波. 机载冷源参数对蒸发循环系统性能的影响[J]. 化工学报, 2020, 71(S1): 212-219. |
[10] | 常健佩, 黄翔, 安苗苗, 李朝阳. 蒸发冷却冷水机组的原理、性能与适用性分析[J]. 化工学报, 2020, 71(S1): 236-244. |
[11] | 郭晓雨, 田喆, 牛纪德, 祝捷. 基于分时电价的区域管网系统储能应用研究[J]. 化工学报, 2020, 71(S1): 293-299. |
[12] | 齐玢, 段希希, 阿嵘, 江泓升. 载人航天器环热控一体化仿真分析[J]. 化工学报, 2020, 71(S1): 300-306. |
[13] | 方黄峰, 刘瑶瑶, 张文彪. 基于LSTM神经网络的流化床干燥器内生物质颗粒湿度预测[J]. 化工学报, 2020, 71(S1): 307-314. |
[14] | 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37. |
[15] | 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321. |
|