化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 436-440.doi: 10.11949/0438-1157.20191083

• 能源和环境工程 • 上一篇    下一篇

机载综合环控系统的热管理

马德胜1(),庞丽萍1(),毛晓东2,董素君1   

  1. 1.北京航空航天大学航空科学与工程学院,北京 100191
    2.沈阳航空航天大学航空发动机学院,辽宁 沈阳 110136
  • 收稿日期:2019-10-07 修回日期:2019-10-14 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 庞丽萍 E-mail:madesheng@buaa.edu.cn;pangliping@buaa.edu.cn
  • 作者简介:马德胜(1995—),男,硕士研究生, madesheng@buaa.edu.cn
  • 基金资助:
    国家重点研发计划项目(2017YFB1201100);辽宁省“兴辽英才计划”基金项目(XLYC1802092)

Thermal management of airborne integrated environmental control system

Desheng MA1(),Liping PANG1(),Xiaodong MAO2,Sujun DONG1   

  1. 1.School of Aviation Science and Engineering, Beihang University, Beijing 100191, China
    2.School of Aero-engine, Shenyang Aerospace University, Shenyang 110136, Liaoning, China
  • Received:2019-10-07 Revised:2019-10-14 Online:2020-04-25 Published:2020-05-22
  • Contact: Liping PANG E-mail:madesheng@buaa.edu.cn;pangliping@buaa.edu.cn

摘要:

利用燃油作为主要热沉,同时引入液体PAO与R134a作为辅助热沉,提出了一种环控系统热管理的新方案。空气压缩制冷子系统与高温PAO子系统以空气-PAO换热器为连接点,耦合为座舱与电子舱室1的热管理子系统;低温PAO子系统与蒸发压缩制冷循环以蒸发器为连接点,耦合为电子舱室2的热管理子系统。采用数学理论计算与计算机建模仿真研究相结合的方法,建立了空气-液体换热器、液-液蒸发器/冷凝器等主要元件的仿真模型,对环控系统进行性能分析。结果表明,在一定的引气温度和压力条件下,燃油作为主要热沉可以吸收大量的热量,同时各子系统的热量互补能够满足驾驶舱与电子舱的温度控制,保证其稳定、高效的运行。

关键词: 热管理, 机载座舱与电子舱, 仿真, 热沉, 模型, 传热

Abstract:

Using fuel as the main heat sink, and introducing liquid PAO and R134a as auxiliary heat sink, a new scheme for thermal management of environmental control system was proposed. The air compression refrigeration subsystem and the high-temperature PAO subsystem use air-PAO heat exchanger as the connection point and are coupled into the thermal management subsystem of cockpit and electronic cabin 1. The cryogenic PAO subsystem and the evaporator compression refrigeration cycle are coupled to the thermal management subsystem of the electronic compartment 2. The simulation models of main components such as air-liquid heat exchanger and liquid-liquid evaporator/condenser are established by combining mathematical calculation with computer modeling and simulation. The results show that under certain air inlet temperature and pressure conditions, fuel as the main heat sink can absorb a lot of heat, and the complementary heat of each subsystem can meet the temperature control of the cockpit and the electronic cabin, to ensure its stable and efficient operation.

Key words: thermal management, airborne cockpit and electronic cabin, simulation, heat sink, model, heat transfer

中图分类号: 

  • TQ 028.8

图1

系统仿真原理"

图2

AmeSim建模仿真程序"

图3

驾驶舱、电子舱的温度仿真结果与系统能量的传递"

图4

系统热力过程"

1 Huang J, Yao W X. Coupled fluid-structural thermal numerical methods for thermal protection system [J]. AAIA Journal, 2019, 57(8): 3630-3638.
2 Daniel B. Integration of exergy analysis into model-based design and evaluation of aircraft environmental control system [J]. Energy, 2017, 137: 739-751.
3 Han Y, Zhang X J. Experimental and theoretical study on a novel energy-saving ECS for commercial airliners [J]. Applied Thermal Engineering, 2017, 127: 1372-1381.
4 Brasseur A. Inside the 747-8 new environmental control system [J]. Aeromagazine, 2012, 1: 19-25.
5 寿荣中, 何慧珊. 飞行器环境控制[M]. 北京: 北京航空航天大学出版社, 2004: 142-176.
Shou R Z, He H S. Aircraft Environmental Control [M]. Beijing: Beihang University Press, 2004: 142-176.
6 Cui W, Wu T. Passenger thermal comfort and behavior: a field investigation in commercial aircraft cabins [J]. Indoor Air, 2017, 27(1): 94-103.
7 Yang Y C, Gao Z C. Power optimization of the environmental control system for the civil more electric aircraft [J]. Energy, 2019, 172: 196-206.
8 Edwards H A, Hardy D D. Aircraft cost index and future of carbon emission from air travel [J]. Applied Energy, 2016, 164: 553-562.
9 Baharozu E, Soykan G. Future aircraft concept in terms of energy efficiency and environmental factors [J]. Energy, 2017, 140: 1368-1377.
10 Grande I P, Leo T J. Optimization of a commercial aircraft environmental control system [J]. Applied Thermal Engineering, 2002, 22: 1885-1904.
11 Ordonez J C, Bejan A. Minimum power requirement for environmental control of aircraft [J]. Energy, 2003, 28: 1183-1202.
12 Zhao H, Hou Y, Zhu Y, et al. Experimental study on the performance of an aircraft environmental control system [J]. Applied Thermal Engineering, 2009, 29: 3284-3288.
13 朱春玲. 飞行器环境控制与安全救生 [M]. 北京: 北京航空航天大学出版社, 2006: 165-176.
Zhu C L. Aircraft Environment Control and Safety Life Saving [M]. Beijing: Beihang University Press, 2006: 165-176.
14 Ab H, Elizabeth D, Jay N. Aircraft skin-cooling system for thermal management of onboard high-power electronics [J]. Journal of Thermophysics and Heat Transfer, 1999, 13(4): 529-536.
15 German B J. Tank heating model for aircraft fuel thermal systems with recirculation [J]. Journal of Propulsion and Power, 2012, 28(1): 204-210.
16 Zhang T, Yin S, Wang S. An under-aisle air distribution system facilitating humidification of commercial aircraft cabins [J]. Building Environment, 2010, 45: 907-917.
17 Li X, Chen Q, Hao J H, et al. Heat current method for analysis and optimization of a refrigeration system for aircraft environmental control system [J]. International Journal of Refrigeration, 2019, 106: 163-180.
18 Zheng D, Cui Y. Study on the fast air heating method for the testbed of the environmental control system of the aircraft [J]. Journal of Physics Conference Series, 2018, 1060(1): 12-72.
19 Yin H S, Shen X. Modeling dynamic responses of aircraft environmental control systems by coupling with cabin thermal environment simulations [J]. Building Simulation, 2016, 9(4): 459-468.
20 常士楠, 袁美名, 袁修干. 飞机机载综合热管理系统稳态仿真[J]. 北京航空航天大学学报, 2008, 34(7): 821-824.
Chang S N, Yuan M M, Yuan X G. Numerical simulation of aircraft integrated thermal management system in steady working condition [J]. Journal of Beihang University, 2008, 34(7): 821-824.
21 Jiang H S, Dong S J. Energy efficiency analysis of electric and conventional environmental control system on commercial aircraft [C]// 2016 IEEE/CSAA International Conference on Aircraft Utility Systems. Beijing: Beihang University Press, 2016: 973-978.
22 Shah S, Liu G, Greatrix D R. Modelling simulation and experimental evaluation of a crossflow heat exchanger for an aircraft environmental control system [J]. Proceedings of the Institution of Mechanical Engineers, 2010, 224(5): 613-623.
23 Leo T J, Isabel P G. A thermoeconomic analysis of a commercial aircraft environmental control system [J]. Applied Thermal Engineering, 2005, 25(2): 309-325.
24 Vargas J V C, Bejan A. Integrative thermodynamic optimization of the environmental control system of an aircraft [J]. International Journal of Heat and Mass Transfer, 2001, 44(20): 3907-3917.
25 Li H B, Dong X M, Li T T, et al. Optimization analysis of aircraft environmental control system based on minimum entropy generation [J]. Computer Engineering, 2011, 37(23): 273-275.
26 Li H B, Dong X M, Li T T, et al. Minimum entropy generation analysis of aircraft environmental control system [J]. Journal of Applied Sciences, 2011, 29(3): 325-330.
27 Yuan W X, Li Y X, Wang C J. Comparison study of membrane dehumidification aircraft environmental control systems [J]. Journal of Aircraft, 2012, 49(3): 815-821.
28 Perhinschi M G, Napolitano M R, Campa G. A simulation environment for design and testing of aircraft adaptive fault-tolerant control systems [J]. Aircraft Engineering and Aerospace Technology: An International Journal, 2008, 80(6): 620-632.
29 Wen T, Zhan H B, Zhang D L, et al. Development of evaporation pressure-capacity control strategy for aircraft vapor cycle system [J]. International Journal of Refrigeration, 2017, 83: 14-22.
30 Cao Q, Liu Y D, Liu W, et al. Experimental study of particle deposition in the environmental control systems of commercial airliners [J]. Building and Environment, 2016, 96: 62-71.
31 Petley D H, Jones S C. Thermal management for a Mach 5 cruise aircraft using endothermic fuel [J]. Journal of Aircraft, 1992, 29(3): 384-389.
[1] 刘子初, 全贞花, 赵耀华, 靖赫然, 姚孟良, 刘新. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128.
[2] 裴后举, 蒋彦龙, 施红, 崔永龙, 陈常栋, 钱晓辉. 基于M-L湍流模型的浮空器强迫对流换热[J]. 化工学报, 2020, 71(S1): 136-141.
[3] 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157.
[4] 孙苏芮, 王德昌, 张金翠, 刘振, 李延辉. 膜蓄能器放能过程的传热传质特性分析[J]. 化工学报, 2020, 71(S1): 158-165.
[5] 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171.
[6] 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186.
[7] 罗坤, 毛晓东, 庞丽萍. 新型直升机热泵空调系统驾驶舱热控性能[J]. 化工学报, 2020, 71(S1): 187-193.
[8] 陈玮玮, 方贤德, 鹿世化, 林福建, 张烨. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211.
[9] 王瑞琪, 高赞军, 杨华, 胡文超, 詹宏波. 机载冷源参数对蒸发循环系统性能的影响[J]. 化工学报, 2020, 71(S1): 212-219.
[10] 常健佩, 黄翔, 安苗苗, 李朝阳. 蒸发冷却冷水机组的原理、性能与适用性分析[J]. 化工学报, 2020, 71(S1): 236-244.
[11] 郭晓雨, 田喆, 牛纪德, 祝捷. 基于分时电价的区域管网系统储能应用研究[J]. 化工学报, 2020, 71(S1): 293-299.
[12] 齐玢, 段希希, 阿嵘, 江泓升. 载人航天器环热控一体化仿真分析[J]. 化工学报, 2020, 71(S1): 300-306.
[13] 方黄峰, 刘瑶瑶, 张文彪. 基于LSTM神经网络的流化床干燥器内生物质颗粒湿度预测[J]. 化工学报, 2020, 71(S1): 307-314.
[14] 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37.
[15] 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .