化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 441-447.doi: 10.11949/0438-1157.20191082

• 能源和环境工程 • 上一篇    下一篇

基于随机配置网络的机载电子吊舱多工况热模型

张洁1(),庞丽萍1(),曲洪权2,王天博3   

  1. 1.北京航空航天大学航空科学与工程学院,北京 100191
    2.北方工业大学信息学院,北京 100144
    3.沈阳航空航天大学经济与管理学院,辽宁 沈阳 110136
  • 收稿日期:2019-10-07 修回日期:2019-11-06 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 庞丽萍 E-mail:zhangjie123@buaa.edu.cn;pangliping@buaa.edu.cn
  • 作者简介:张洁(1996—),女,博士研究生,zhangjie123@buaa.edu.cn
  • 基金资助:
    国家重点研发计划项目(2017YFB1201100);辽宁省“兴辽英才计划”基金项目(XLYC1802092)

Multi-condition thermal models of avionics pod using stochastic configuration network

Jie ZHANG1(),Liping PANG1(),Hongquan QU2,Tianbo WANG3   

  1. 1.School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
    2.School of Information Science and Technology, North China University of Technology, Beijing 100144, China
    3.School of Economic and Management, Shenyang Aerospace University, Shenyang 110136, Liaoning, China
  • Received:2019-10-07 Revised:2019-11-06 Online:2020-04-25 Published:2020-05-22
  • Contact: Liping PANG E-mail:zhangjie123@buaa.edu.cn;pangliping@buaa.edu.cn

摘要:

机载电子吊舱是搭载多功能机载电子设备的主要平台,能够显著提升战机性能。然而,不断增加的电子设备功率和高度低气压力飞行环境会造成吊舱内恶劣的热环境,严重影响电子设备的可靠性。因此,十分有必要建立准确的电子吊舱热模型,用于预测不同飞行工况下的电子设备热响应。综合热网络分析思想和随机网络算法思想,提出一种基于随机配置网络的热模型建立方法,并通过采用冲压空气冷却系统的电子吊舱实验数据加以验证。为了建立准确的舱内温度响应模型,通过传热机制将高温贮存、高温工作、低温贮存、低温故障和低温工作工况下的实验数据分为3组并分别用于建立设备贮存热模型、设备工作热模型和综合热模型,利用热网络分析获取随机配置网络的有效输入,采用四折交叉验证和灰度图分析综合确定了3个热模型的超参数。建模结果表明:3个热模型的范围序列可统一为[1~40],最大隐含层节点数可分别设为6、9、11,设备温度拟合效果较好,仅在边界条件约束下进行多工况全过程的电子设备温度预测,预测误差在3.512℃内。总体看来,该热建模方法从数据挖掘的角度较为简单、准确、快速地描述了电子设备热关系,可用于开展预期飞行环境下的机载电子吊舱温度预测,用于评估热管理系统的性能。

关键词: 机载电子吊舱, 热响应, 热网络, 随机配置网络, 热力学, 数学模拟, 算法

Abstract:

Avionics pod is a main carrier for multifunctional airborne electronic equipment, which effectively improves the performance of fighter. Increasing power of electronic equipment and low-pressure flight environment can exacerbate thermal environment in pod and can further affects the reliability of electronic equipment, so it is important to predict the thermal response of equipment under different flight conditions. In this paper, a thermal modeling method using thermal network analysis and stochastic configuration network is proposed and is further verified by experimental data of avionics pod with a ram air cooling system. The data of five conditions (high temperature storage, high temperature working, low temperature storage, low temperature accident and low temperature working) is divided into three groups according to heat transfer mechanism and is used to establish the storage thermal models, the working thermal models and the comprehensive thermal models, respectively. Thermal network analysis is used to obtain the input of network. Four-fold cross-validation and gray-scale analysis are used to determine hyper-parameters. The results show that the range sequence can be unified to [1—40] and the maximum number of hidden nodes of three thermal models can be set to 6, 9, and 11, respectively. The modeling results are positive, and the prediction error of electronic equipment temperature in the whole process of multi-conditions is within 3.512℃. Thus, the thermal modeling method that describes the thermal relationship of electronic equipment by data mining can be used to predict the avionics pod temperature in expected flight environment and evaluate the performance of thermal management system.

Key words: avionics pod, thermal response, thermal network, stochastic configuration network, thermodynamics, mathematical modeling, algorithm

中图分类号: 

  • V 216.5+1

图1

实验装置1—环境模拟舱;2—模拟气源;3—机载电子吊舱;4—吊舱电子设备;5—吊舱环控系统;6—数据采集系统"

表1

实验工况条件设置"

实验工况

模拟舱设定

温度/℃

吊舱设备

状态

环控系统

状态

高温贮存70
高温工作70
低温贮存-55
低温故障-55
低温工作-55

图2

设备温度变化"

图3

随机配置网络结构"

图4

建模流程"

图5

热模型超参数确定"

图6

综合热模型建模结果"

表2

多工况全过程的预测结果"

指标E1E2E3E4E5
最大误差/℃3.5121.1061.6762.0760.860
RMSE/℃1.2870.5070.9901.0700.506

图7

多工况全过程的预测温度曲线"

1 庞利娥, 蒋福根. 一种机载电子吊舱热环境设计与分析[J]. 航天电子对抗, 2013, 29(4): 55-58.
Pang L E, Jiang F G. Thermal environment design and analysis of the aircraft electronic pod [J]. Aerospace Electronic Warfare, 2013, 29(4): 55-58.
2 王志强. 机载光电吊舱热特性分析[J]. 电光与控制, 2012, 19(8): 70-73.
Wang Z Q. Analysis on thermal characteristics of airborne electro-optical pod [J]. Electronics Optics & Control, 2012, 19(8): 70-73.
3 Atkey W A, Fiterman C J. High efficiency aircraft cabin air supply cooling system: US7121100B2 [P].2006.
4 Bender D. Integration of exergy analysis into model-based design and evaluation of aircraft environmental control systems [J]. Energy, 2017, 137: 739-751.
5 Chang C W, Dinh N T. Classification of machine learning frameworks for data-driven thermal fluid models [J]. International Journal of Thermal Sciences, 2018, 135: 559-579.
6 Suryanarayana G, Lago J, Geysen D, et al. Thermal load forecasting in district heating networks using deep learning and advanced feature selection methods [J]. Energy, 2018, 157: 141-149.
7 Gunasekar N, Mohanraj M, Velmurugan V. Artificial neural network modeling of a photovoltaic-thermal evaporator of solar assisted heat pumps [J]. Energy, 2015, 93: 908-922.
8 Adewole B Z, Abidakun O A, Asere A A. Artificial neural network prediction of exhaust emissions and flame temperature in LPG (liquefied petroleum gas) fueled low swirl burner [J]. Energy, 2013, 61(6): 606-611.
9 Dhanuskodi R, Kaliappan R, Suresh S, et al. Artificial neural networks model for predicting wall temperature of supercritical boilers [J]. Soft Computing, 2009, 13(3): 291-305.
10 Tian Z, Qian C, Gu B, et al. Electric vehicle air conditioning system performance prediction based on artificial neural network [J]. Applied Thermal Engineering, 2015, 89: 101-114.
11 Korteby Y, Mahdi Y, Azizou A, et al. Implementation of an artificial neural network as a PAT tool for the prediction of temperature distribution within a pharmaceutical fluidized bed granulator [J]. European Journal of Pharmaceutical Sciences, 2016, 88: 219-232.
12 Starkov S O, Lavrenkov Y N. Prediction of the moderator temperature field in a heavy water reactor based on a cellular neural network [J]. Nuclear Energy & Technology, 2017, 3(2): 133-140.
13 刘曙光, 郑崇勋, 刘明远. 前馈神经网络中的反向传播算法及其改进: 进展与展望[J]. 计算机科学, 1996, 23(1): 76-79.
Liu S G, Zheng C X, Liu M Y. Back propagation algorithm in feedforward neural networks and its improvement: progress and prospects [J]. Computer Science, 1996, 23(1): 76-79.
14 陈格. 人工神经网络技术发展综述[J]. 中国科技信息, 2009, (17): 88-89.
Chen G. Summary of the research and development of the artificial neural network [J]. Chinese Science and Technology Information, 2009, (17): 88-89.
15 丛爽, 王怡雯. 随机神经网络发展现状综述[J]. 控制理论与应用, 2004, 21(6): 975-980.
Cong S, Wang Y W. Survey of current progress in random neural network [J]. Control Theory & Applications, 2004, 21(6): 975-980.
16 乔俊飞, 李凡军, 杨翠丽. 随机权神经网络研究现状与展望[J]. 智能系统学报, 2016, 11(6): 758-767.
Qiao J F, Li F J, Yang C L. Review and prospect on neural networks with random weights [J]. CAAI Transactions on Intelligent Systems, 2016, 11(6): 758-767.
17 Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural networks [C]// Proceedings of the 30th International Conference on Machine Learning. USA: ICML, 2013: 1310-1318.
18 康芹, 李世武, 郭建利, 等. 热网络法概论[J]. 工业加热, 2006, 35(5): 19-22.
Kang Q, Li S W, Guo J L, et al. The thermal network method outline [J]. Industrial Heating, 2006, 35(5): 19-22.
19 Schmidt W F, Kraaijveld M A, Duin R P W. Feed forward neural networks with random weights [C]// Proceedings of 11th IAPR International Conference on Pattern Recognition Methodology and Systems. Netherlands: Hague, 1992: 1-4.
20 Li M, Wang D. Insights into randomized algorithms for neural networks: practical issues and common pitfalls [J]. Information Sciences, 2017, 382/383: 170-178.
21 Wang D, Li M. Stochastic configuration networks: fundamentals and algorithms [J]. IEEE Transactions on Cybernetics, 2017, 47(10): 3466-3479.
22 Wang D, Li M. Robust stochastic configuration networks with kernel density estimation for uncertain data regression [J]. Information Sciences, 2017, 412/413: 210-222.
23 Wang D, Cui C. Stochastic configuration networks ensemble with heterogeneous features for large-scale data analytics [J]. Information Sciences, 2017, 417: 55-71.
24 Rong A, Liu M, Pang L, et al. Kinetics study of gas pollutant adsorption and thermal desorption on silica gel [J]. Applied Sciences, 2017, 7(6): 609.
25 毕小平, 王普凯, 周国印. 基于集总参数法的坦克稳态热分析模型[J]. 装甲兵工程学院学报, 2012, 26(3): 25-29.
Bi X P, Wang P K, Zhou G Y. A thermal analysis model based on lumped parameter for tank stable working conditions [J]. Journal of Academy of Armored Force Engineering, 2012, 26(3): 25-29.
26 兰志勇, 魏雪环, 李虎如, 等. 基于集总参数热网络法的永磁同步电机温度场分析[J]. 电气工程学报, 2017, 12(1): 17-21, 32.
Lan Z Y, Wei X H, Li H R, et al. Thermal analysis of PMSM based on lumped parameter thermal network method [J]. Journal of Electrical Engineering, 2017, 12(1): 17-21, 32.
27 Harrington P. Machine Learning in Action [M]. USA: Manning Publications, 2012.
28 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
Zhou Z H. Machine Learning [M]. Beijing: Tsinghua University Press, 2016.
29 Scardapane S, Wang D, Uncini A. Bayesian random vector functional-link networks for robust data modeling[J]. IEEE Transactions on Cybernetics, 2018, 48(7): 2049-2059.
30 Chai T, Draxler R R. Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature [J]. Geoscientific Model Development, 2014, 7(3): 1247-1250.
[1] 裴后举, 蒋彦龙, 施红, 崔永龙, 陈常栋, 钱晓辉. 基于M-L湍流模型的浮空器强迫对流换热[J]. 化工学报, 2020, 71(S1): 136-141.
[2] 王晨, 折晓会, 张小松. 含空气净化过程的液态空气储能热力学研究[J]. 化工学报, 2020, 71(S1): 23-30.
[3] 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321.
[4] 孟繁鑫, 孙佳宁, 周月, 高赞军, 程定斌. 飞机环控系统空气循环机仿真建模及试验校核[J]. 化工学报, 2020, 71(S1): 328-334.
[5] 郭良, 李恒, 庞丽萍, 毛晓东, 赵竞全, 杨晓东. 高速运载器发电/制冷联合系统稳态性能[J]. 化工学报, 2020, 71(S1): 391-396.
[6] 郭栋才, 盛强, 杨鹏, 徐捷, 王泽, 杨波, 曹娇坤. 基于热电效应的高效环控系统[J]. 化工学报, 2020, 71(S1): 404-410.
[7] 杨晓东, 庞丽萍, 阿嵘, 金亮. 高速飞行器燃油热管理系统飞行热航时[J]. 化工学报, 2020, 71(S1): 425-429.
[8] 杨东升, 阿嵘, 张建斌, 王大鹏, 张斌, 徐迎丽, 秦俊杰, 刘淑芬. 航天器舱内环境下非金属增材制造热效应分析[J]. 化工学报, 2020, 71(S1): 486-493.
[9] 李攀, 孔慧, 宋卓栋, 张作毅, 王云芳. 甲醇-甲醛-聚甲氧基二甲醚三元体系汽液平衡[J]. 化工学报, 2020, 71(S1): 7-14.
[10] 谭畯坤, 刘玉东, 耿世超, 陈兵, 童明伟. 真空探针冷冻和复温性能实验测试及数值模拟[J]. 化工学报, 2020, 71(4): 1440-1449.
[11] 鲁玉莹, 余黎明, 杨加可, 曾武松, 陆江银. 响应面法优化制备LDHs-CRMA复合改性沥青及其表征[J]. 化工学报, 2020, 71(3): 1362-1369.
[12] 王磊, 陈玉婷, 徐燕燕, 叶爽, 黄伟光. 综合考虑经济性与效率的换热网络多目标约束优化方法[J]. 化工学报, 2020, 71(3): 1189-1201.
[13] 耿志强, 曾荣甫, 徐圆, 韩永明, 顾祥柏. 融合灰狼优化算法在工控系统入侵检测中的应用[J]. 化工学报, 2020, 71(3): 1080-1087.
[14] 耿志强, 毕帅, 王尊, 朱群雄, 韩永明. 基于改进NSGA-Ⅱ算法的乙烯裂解炉操作优化[J]. 化工学报, 2020, 71(3): 1088-1094.
[15] 赵文英, 李文文, 孙晓岩, 曹晓荣, 项曙光. 基于PR立方型状态方程普遍化温度函数的研究与评价[J]. 化工学报, 2020, 71(3): 1234-1245.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .