化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 149-157.doi: 10.11949/0438-1157.20191080

• 流体力学与传递现象 • 上一篇    下一篇

横流环境中压电风扇耦合射流流动换热特性

李鑫郡(),陈玮玮,鹿世化   

  1. 南京师范大学能源与机械工程学院,江苏 南京 210023
  • 收稿日期:2019-10-07 修回日期:2019-11-07 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 李鑫郡 E-mail:lixinjun@nnu.edu.cn
  • 作者简介:李鑫郡(1988—),男,博士,讲师,lixinjun@nnu.edu.cn
  • 基金资助:
    江苏省高等学校自然科学研究面上项目(19KJB470025)

Coupled flow and heat transfer characteristics of piezoelectric fan with cross flow

Xinjun LI(),Weiwei CHEN,Shihua LU   

  1. School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China
  • Received:2019-10-07 Revised:2019-11-07 Online:2020-04-25 Published:2020-05-22
  • Contact: Xinjun LI E-mail:lixinjun@nnu.edu.cn

摘要:

利用激光多普勒测振仪分别测定攻角和横流速度对压电风扇振幅的影响。基于相应的振动测试结果利用动网格技术对横流环境中不同安装角度下压电风扇冷却加热壁面的三维非定常流动和传热特性进行了数值模拟,同时应用红外热像仪对相同横流条件工况下加热表面的局部对流传热系数分布进行了测量。研究结果显示,攻角为90°时,作用在风扇上的气动载荷最小,风扇振幅最大,而随着攻角的减小风扇振幅也逐渐减小;安装角为90°时,压电风扇振动以及横流作用所诱导形成的耦合涡结构冲击加热表面,并在下游区域具有明显的脱落、破碎过程,对于叶尖包络区对应的壁面局部对流换热有显著的强化作用,此时风扇耦合换热性能最强,高于45°和135° 2倍以上;且时均对流传热系数的实验结果与数值模拟具有良好的一致性。

关键词: 压电风扇, 传热, 振动测试, 数值模拟, 实验验证

Abstract:

Piezoelectric fan is a solid-state device which generally consists of a patch of piezoelectric material and a flexible blade. It employs the reversed piezoelectric effect to make the piezoelectric patch expand and contract periodically, driving the attached flexible blade to oscillate at the same frequency. Due to the oscillatory motion of flexible blade, the neighboring fluid is periodically excited and thus a pseudo-jet or streaming flow is produced shedding along the fan tip. On account of its some features, such as simple structure, low power consumption, and easy controllability, piezoelectric fan has recently gained much attention in the practical applications, such as electronics cooling, energy harvesting, biomimetic robotic propulsion, etc. Innovation on heat transfer enhancement with active flow control technology is a frontier issue aspect facing to the engineering thermal science. The effects of α (the angle between vibrating direction and cross flow direction) and u (cross flow velocity) on the amplitude of a single piezoelectric fan have been tested by using Laser Doppler Vibrameter (LDV). Three-dimensional unsteady flow and heat transfer characteristics driven by single piezoelectric fan arranged normally to the heated surface with different β (the angle between piezoelectric fan center line and cross flow direction) was per-formed by using dynamic meshing scheme. The displacement of the vibrating fan was determined from vibration test by using LDV. An experimental test for the local convective heat transfer coefficient distribution was also made by using infrared camera. The results show that aerodynamic loading from cross flow gets minimum and the amplitude of the piezoelectric fan is maximum when α equals 90°. When β equals 90°, the vortical structures excited by the coupling effect of piezoelectric fan and cross flow impacts the heated surface, and the shed-ding vortex is easier to be broken down in downstream region in relative to the other cases. In this condition, the local convective heat transfer in fan-tip vibration envelope is effectively enhanced, and the coupled heat transfer performance is 2 times larger than β=45° and 135°. The cycle-averaged local heat transfer coefficient distribution obtained by tested is well consistence to the numerical simulation.

Key words: piezoelectric fan, heat transfer, vibration test, numerical simulation, experimental validation

中图分类号: 

  • O 354

图1

压电风扇结构"

图2

振动测试段装置"

图3

横流环境中压电风扇振幅随攻角的变化"

图4

不同横流速度下压电风扇的最大位移(α=90°)"

表1

多项式相关系数"

uCF /(m·s-1)p1×10-6p2×10-4p3×10-3p4×10-2p5×10-2
0-1.8862.447-7.316.078-5.092
6.00-1.1521.606-5.2114.935-5.941
10.00-0.56368.272-2.8682.969-4.246

图5

数值计算模型"

图6

网格独立性验证"

图7

传热实验示意图"

图8

瞬时温度分布和λ2=-3×104瞬态等值面"

图9

恒热流壁面对流传热系数分布"

1 Yoo J H, Hong J I, Cao W. Piezoelectric ceramic bimorph coupled to thin metal plate as cooling fan for electronic devices [J]. Sensors Actuators A, 2000, 79(1): 8-12.
2 Wo T, Ro P I, Kingon A I, et al. Piezoelectric resonating structures for microelectronic cooling [J]. Smart Materials and Structures, 2003, 12(2): 181-187.
3 Sydney M W, Basak S, Garimella S V, et al. Piezoelectric fans using higher flexural models for electronics cooling applications [J]. IEEE Transactions on Components and Packaging Technologies, 2007, 30(1): 119-128.
4 Kim Y H, Wereley S T, Chun C H. Phase-resolved flow field produced by a vibrating cantilever plate between two endplates [J]. Physics in Fluids, 2004, 16(1): 145-162.
5 Kimber M, Suzuki K, Kitsunai N, et al. Pressure and flow rate performance of piezoelectric fans [J]. IEEE Transaction on Components and Packaging Technologies, 2009, 32: 766-775.
6 Choi M, Cierpka C, Kim Y H. Vortex formation by a vibrating cantilever [J]. Journal of Fluids and Structures, 2012, 31: 67-78.
7 Aciklain T, Wait S M, Garimella S V. Experimental investigation of the thermal performance of piezoelectric fans [J]. Heat Transfer Engineering, 2004, 25(1): 4-14.
8 Liu S F, Huang R T, Sheu W J, et al. Heat transfer by a piezoelectric fan on a flat surface subject to the influence of horizontal/vertical arrangement [J]. International Journal of Heat and Mass Transfer, 2009, 52(11/12): 2565-2570.
9 Fairuz Z M, Sufian S F, Abdullah M Z, et al. Effect of piezoelectric fan mode shape on the heat transfer characteristics [J]. International Communications in Heat and Mass Transfer, 2014, 52: 140-151.
10 Lin C N. Analysis of three-dimensional heat and fluid flow induced by piezoelectric fan [J]. International Journal of Heat and Mass Transfer, 2012, 55: 3043-3053.
11 谭蕾,谭晓茗,张靖周. 压电风扇激励非定常流动和换热特性数值研究[J]. 航空学报,2013, 34(6): 1277-1284.
Tan L, Tan X M, Zhang J Z. Numerical investigation on unsteady flow and heat transfer characteristics of piezoelectric fan [J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6): 1277-1284.
12 Li X J, Zhang J Z, Tan X M. An investigation on convective heat transfer performance around piezoelectric fan vibration envelope in a forced channel flow [J]. International Journal of Heat and Mass Transfer, 2018, 126: 48-65.
13 Li X J, Zhang J Z, Tan X M. Convective heat transfer on a flat surface induced by a vertically oriented piezoelectric fan in the presence of cross flow [J]. Heat Mass Transfer, 2017, 53: 2745-2768.
14 孔岳,李敏,吴蒙蒙. 压电风扇非定常流场速度分布的数值研究[J]. 工程力学,2016, 33(1): 209-216.
Kong Y, Li M, Wu M M. Numerical investigation on the velocity of unsteady flow field induced by piezoelectric fan [J]. Engineering Mechanics, 2016, 33(1): 209-216.
15 孔岳,李敏,辛庆利. 压电风扇结构设计与参数影响研究[J]. 北京航空航天大学学报,2016, 42(9): 1977-1985.
Kong Y, Li M, Xin Q L. Structure design of piezoelectric fans and research on influence of parameters [J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(9): 1977-1985.
16 Choi M, Cierpka C, Kim Y. Effects of the distance between a vibrating cantilever pair [J]. European Journal of Mechanics - B/Fluids, 2014, 43: 154-165.
17 Choi M, Lee S, Kim Y. On the flow around a vibrating cantilever pair with different phase angles [J]. European Journal of Mechanics - B/Fluids, 2012, 34: 146-157.
18 Sufian S F, Abdullah M Z, Mohamed J J. Effect of synchronized piezoelectric fans on microelectronic cooling performance [J]. International Communications in Heat and Mass Transfer, 2013, 43: 81-89.
19 Sufian S F, Fairuz Z M, Zubair M, et al. Thermal analysis of dual piezoelectric fans for cooling multi-LED [J]. Microelectrics Reliability, 2014, 54: 1534-1543.
20 Li H Y, Chao S H, Chen J W, et al. Thermal performance of plate-fin heat sinks with piezoelectric cooling fan [J]. International Journal of Heat and Mass Transfer, 2013, 57: 722-732.
21 Gilson G M, Pickering S J, Hann D B, et al. Piezoelectric fan cooling: a novel high reliability electric machine thermal management solution [J]. IEEE Transactions on Industrial Electronics, 2013, 60: 4841-4851.
22 Ma S L, Chen J W, Li H Y, et al. Mechanism of enhancement of heat transfer for plate-fin heat sinks with dual piezoelectric fans [J]. International Journal of Heat and Mass Transfer, 2015, 90: 454-465.
23 Ma H K, Su H C, Liu C L. Investigation of a piezoelectric fan embedded in a heat sink [J]. International Communications in Heat and Mass Transfer, 2012, 39: 603-609.
24 Ma H K, Liu C L, Su H C, et al. Study of a cooling system with a piezoelectric fan [C]// 28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM). San Jose, CA, USA, 2012: 243-248.
25 Abdullah M K, Ismail N C, Abdullah M Z, et al. Effects of tip gap and amplitude of piezoelectric fans on the performance of heat sinks in microelectronic cooling [J]. Heat and Mass Transfer, 2012, 48: 893-901.
26 Sufian S F, Abdullah M Z. Heat transfer enhancement of LEDs with a combination of piezoelectric fans and a heat sink [J]. Microelectronics Reliability, 2017, 68: 39-50.
27 Abdullah M K, Ismail N C, Mujeebu M A, et al. Optimum tip gap and orientation of multi-piezofan for heat transfer enhancement of finned heat sink in microelectronic cooling [J]. International Journal of Heat and Mass Transfer, 2012, 55: 5514-5525.
28 Kimber M, Garimella S V, Raman A. Local heat transfer coefficients induced by piezoelectrically actuated vibrating cantilevers [J]. ASME J. Heat Transfer, 2007, 123: 1168-1176.
29 Lin C N. Enhanced heat transfer performance of cylindrical surface by piezoelectric fan under forced convection conditions [J]. International Journal of Heat and Mass Transfer, 2013, 60: 296-308.
30 Brevet P, Dejeu C, Dorignac E, et al. Heat transfer to a row of impinging jets in consideration of optimization [J]. International Journal of Heat and Mass Transfer, 2002, 45(20): 4191-4200.
31 Moffat R J. Describing the uncertainties in experimental results [J]. Experimental Thermal and Fluid Science, 1998, 1(1): 3-17.
32 Jeong J, Hussain F. On the definition of a vortex [J]. Journal of Fluid Mechanics, 1995, 285(1): 69-94.
[1] 李阳, 常守金, 胡海涛, 孙浩然, 赖展程, 刘善敏. 飞行器机载精密仪器温控系统性能的实验研究[J]. 化工学报, 2020, 71(S1): 77-82.
[2] 詹宏波, 郑文远, 文涛, 张大林. 微尺度通道内R134a的冷凝传热实验研究[J]. 化工学报, 2020, 71(S1): 83-89.
[3] 刘秀峰, 张诗, 周志杰, 郑浩, 王成泽, 时红远, 李梦杰. 换热器结构优化与换热性能评价指标研究[J]. 化工学报, 2020, 71(S1): 98-105.
[4] 刘子初, 全贞花, 赵耀华, 靖赫然, 姚孟良, 刘新. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128.
[5] 王磊, 赵福云, 蔡阳, 汪维伟, 王云鹤, 杨国彪. 置换通风模式下多元对流室内热与污染物输运[J]. 化工学报, 2020, 71(S1): 142-148.
[6] 孙苏芮, 王德昌, 张金翠, 刘振, 李延辉. 膜蓄能器放能过程的传热传质特性分析[J]. 化工学报, 2020, 71(S1): 158-165.
[7] 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171.
[8] 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186.
[9] 陈玮玮, 方贤德, 鹿世化, 林福建, 张烨. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211.
[10] 王瑞琪, 高赞军, 杨华, 胡文超, 詹宏波. 机载冷源参数对蒸发循环系统性能的影响[J]. 化工学报, 2020, 71(S1): 212-219.
[11] 常健佩, 黄翔, 安苗苗, 李朝阳. 蒸发冷却冷水机组的原理、性能与适用性分析[J]. 化工学报, 2020, 71(S1): 236-244.
[12] 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37.
[13] 张晨宇, 王宁, 徐洪涛, 张剑飞, 曹萌. 基于相变材料的太阳能PV/T系统性能[J]. 化工学报, 2020, 71(S1): 361-367.
[14] 郭良, 李恒, 庞丽萍, 毛晓东, 赵竞全, 杨晓东. 高速运载器发电/制冷联合系统稳态性能[J]. 化工学报, 2020, 71(S1): 391-396.
[15] 王栋, 刘雅如, 陈卓, 寇遵丽, 鲁月红. 充注量对小型CO2水源热泵热水器性能的影响及其最佳值的确定[J]. 化工学报, 2020, 71(S1): 397-403.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 刘夺, 杜瑾, 赵广荣, 元英进. 合成生物学在医药及能源领域的应用 [J]. 化工学报, 2011, 62(9): 2391 -2397 .
[6] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[7] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[8] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[9] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[10] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .