化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 31-37.doi: 10.11949/0438-1157.20191079
Tingwei ZHANG1,2(),Bin LI2,Xiaoqiang ZHAI2(
)
摘要:
以理论为基础,分析了在含有内热源的二维稳态导热问题中的
耗散。并以此为目标函数,通过密度法建立拓扑优化模型并用全局移动渐近线(GCMMA)开展拓扑优化研究。对比分析了以最小
耗散以及最小熵产得到的拓扑优化构型在传热性能上的异同。然后,以最小
耗散为优化目标,进一步分析了不同高导热材料体积占比下最优传热拓扑结构。结果表明,最小
耗散以及最小熵产得到的拓扑优化构型结构相似,均可大幅增加传热性能,系统的平均温度均可降低9℃以上。而对于传热结构来说,综合考虑优化效果以及成本,20%的体积占比是一个较优值,在此占比下,优化后的
耗散仅为优化前的8.7%。基于
理论的传热结构拓扑研究为肋片的结构设计以及传热强化提供了理论指导。
中图分类号:
1 | Al-Abidi A A, Mat S, Sopian K, et al. Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers [J]. Applied Thermal Engineering, 2013, 53(1): 147-156. |
2 | Wen M Y, Ho C Y. Heat-transfer enhancement in fin-and-tube heat exchanger with improved fin design [J]. Applied Thermal Engineering, 2009, 29(5): 1050-1057. |
3 | Ravagnani M A S S, Caballero J A. Optimal heat exchanger network synthesis with the detailed heat transfer equipment design [J]. Computers & Chemical Engineering, 2007, 31(11): 1432-1448. |
4 | Liu Z, Yoon J K. A study on heat transfer and pressure drop characteristics of plain fin-tube heat exchanger using CFD analysis [J]. Journal of the Korean Society of Marine Engineering, 2014, 38(6): 615-624. |
5 | Adem A, Mehmet E C. Investigation of fin application effects on melting time in a latent thermal energy storage system with phase change material (PCM) [J]. Applied Thermal Engineering, 2018, 144: 1071-1080. |
6 | Borhani S M, Hosseini M J, Ranjbar A A, et al. Investigation of phase change in a spiral-fin heat exchanger [J]. Applied Mathematical Modelling, 2019, 67: 297-314. |
7 | Mahdi J M, Nsofor E C. Melting enhancement in triplex-tube latent thermal energy storage system using nanoparticles-fins combination [J]. International Journal of Heat and Mass Transfer, 2017, 109: 417-427. |
8 | Jia X, Zhai X, Cheng X. Thermal performance analysis and optimization of a spherical PCM capsule with pin-fins for cold storage [J]. Applied Thermal Engineering, 2019, 148: 929-938. |
9 | Tehmina A, Man-Hoe K. Effect of fin shape on the thermal performance of nanofluid-cooled micro pin-fin heat sinks [J]. International Journal of Heat and Mass Transfer, 2018, 126: 245-256. |
10 | Sadaghiani A K, Koşar A. Numerical investigations on the effect of fin shape and surface roughness on hydrothermal characteristics of slip flows in microchannels with pin fins [J]. International Journal of Thermal Sciences, 2018, 124: 375-386. |
11 | Iqbal Z, Syed K S, Ishaq M. Optimal fin shape in finned double pipe with fully developed laminar flow [J]. Applied Thermal Engineering, 2013, 51(1/2): 1202-1223. |
12 | Nada S A, Said M A. Effects of fins geometries, arrangements, dimensions and numbers on natural convection heat transfer characteristics in finned-horizontal annulus [J]. International Journal of Thermal Sciences, 2019, 137: 121-137. |
13 | Bendsøe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method [J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224. |
14 | Xie Y M, Steven G P. A simple evolutionary procedure for structural optimization [J]. Computers & Structures, 1993, 49(5): 885-896. |
15 | 周克民, 胡云昌. 结合拓扑分析进行平面连续体拓扑优化[J]. 天津大学学报, 2001, (3): 340-345. |
Zhou K M, Hu Y C. Topology analysis and optimization of planar continuum [J]. Journal of Tianjin University, 2001, (3): 340-345. | |
16 | Dbouk T. A review about the engineering design of optimal heat transfer systems using topology optimization [J]. Applied Thermal Engineering, 2017, 112(2017): 841-854. |
17 | Gersborg-Hansen A, Bendsøe M P, Sigmund O. Topology optimization of heat conduction problems using the finite volume method [J]. Structural and Multidisciplinary Optimization, 2006, 31(4): 251-259. |
18 | Marck G, Nemer M, Harion J L, et al. Topology optimization using the SIMP method for multiobjective conductive problems [J]. Numerical Heat Transfer, Part B: Fundamentals, 2012, 61(6): 439-470. |
19 | Page L G, Dirker J, Meyer J P. Topology optimization for the conduction cooling of a heat-generating volume with orthotropic material [J]. International Journal of Heat & Mass Transfer, 2016, 103: 1075-1083. |
20 | Burger F H, Dirker J, Meyer J P. Three-dimensional conductive heat transfer topology optimisation in a cubic domain for the volume-to-surface problem [J]. International Journal of Heat and Mass Transfer, 2013, 67: 214-224. |
21 | Sigmund O. A 99 line topology optimization code written in Matlab [J]. Structural & Multidisciplinary Optimization, 2001, 21(2): 120-127. |
22 | Sigmund O. Design of multiphysics actuators using topology optimization (Ⅱ): Two-material structures [J]. Computer Methods in Applied Mechanics & Engineering, 2001, 190(49): 6577-6604. |
23 | Andreassen E, Clausen A, Schevenels M, et al. Efficient topology optimization in MATLAB using 88 lines of code [J]. Structural and Multidisciplinary Optimization, 2011, 43(1): 1-16. |
24 | Aage N, Andreassen E, Lazarov B S. Topology optimization using PETSc: an easy-to-use, fully parallel, open source topology optimization framework [J]. Structural & Multidisciplinary Optimization, 2015, 51(3): 565-572. |
25 | Liu K, Tovar A. An efficient 3D topology optimization code written in Matlab [J]. Structural and Multidisciplinary Optimization, 2014, 50(6): 1175-1196. |
26 |
过增元, 梁新刚, 朱宏晔. ![]() |
Guo Z Y, Liang X G, Zhu H Y. Entransy — a physical quality describing heat transfer ability [J]. Process in Natural Science, 2006, (10): 1288-1296. | |
27 | Bendsøe M P. Optimal shape design as a material distribution problem [J]. Struct. Optim., 1989, 1(4): 193-202. |
28 | Mlejnek H P. An engineer s approach to optimal material distribution & shape finding [J]. Comp. Meth. Appl. Mech. Engng., 1993, 106(1/2): 1-26. |
29 | Haber R B, Jog C S, Bendsøe M P. New approach to variable-topology shape design using a constraint on perimeter [J]. Structural and Multidisciplinary Optimization, 1996, 11(1): 1-12. |
30 | Svanberg K. The method of moving asymptotes — a new method for structural optimization [J]. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359-373. |
[1] | 刘子初, 全贞花, 赵耀华, 靖赫然, 姚孟良, 刘新. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128. |
[2] | 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157. |
[3] | 孙苏芮, 王德昌, 张金翠, 刘振, 李延辉. 膜蓄能器放能过程的传热传质特性分析[J]. 化工学报, 2020, 71(S1): 158-165. |
[4] | 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171. |
[5] | 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186. |
[6] | 陈玮玮, 方贤德, 鹿世化, 林福建, 张烨. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211. |
[7] | 王瑞琪, 高赞军, 杨华, 胡文超, 詹宏波. 机载冷源参数对蒸发循环系统性能的影响[J]. 化工学报, 2020, 71(S1): 212-219. |
[8] | 常健佩, 黄翔, 安苗苗, 李朝阳. 蒸发冷却冷水机组的原理、性能与适用性分析[J]. 化工学报, 2020, 71(S1): 236-244. |
[9] | 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321. |
[10] | 周月, 张鹤林, 程定斌, 尹俊成. 典型空气循环制冷系统仿真研究[J]. 化工学报, 2020, 71(S1): 341-345. |
[11] | 张晨宇, 王宁, 徐洪涛, 张剑飞, 曹萌. 基于相变材料的太阳能PV/T系统性能[J]. 化工学报, 2020, 71(S1): 361-367. |
[12] | 郭良, 李恒, 庞丽萍, 毛晓东, 赵竞全, 杨晓东. 高速运载器发电/制冷联合系统稳态性能[J]. 化工学报, 2020, 71(S1): 391-396. |
[13] | 郭栋才, 盛强, 杨鹏, 徐捷, 王泽, 杨波, 曹娇坤. 基于热电效应的高效环控系统[J]. 化工学报, 2020, 71(S1): 404-410. |
[14] | 马德胜, 庞丽萍, 毛晓东, 董素君. 机载综合环控系统的热管理[J]. 化工学报, 2020, 71(S1): 436-440. |
[15] | 李阳, 常守金, 胡海涛, 孙浩然, 赖展程, 刘善敏. 飞行器机载精密仪器温控系统性能的实验研究[J]. 化工学报, 2020, 71(S1): 77-82. |
|