化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 404-410.doi: 10.11949/0438-1157.20191078

• 能源和环境工程 • 上一篇    下一篇

基于热电效应的高效环控系统

郭栋才1(),盛强1,杨鹏1,徐捷2,王泽1,杨波3,曹娇坤1   

  1. 1.中国科学院太空应用重点实验室,中国科学院空间应用工程与技术中心,北京 100094
    2.北京机械设备研究所,北京 100040
    3.北京航空航天大学航空科学与工程学院,北京 100191
  • 收稿日期:2019-10-07 修回日期:2019-10-14 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 郭栋才 E-mail:guodongcai@csu.ac.cn
  • 作者简介:郭栋才(1988—),男,博士,助理研究员,guodongcai@csu.ac.cn; guodong514@126.com
  • 基金资助:
    中国科学院空间应用工程与技术中心前瞻性课题项目

Environmental control system based on thermoelectric cooler

Dongcai GUO1(),Qiang SHENG1,Peng YANG1,Jie XU2,Ze WANG1,Bo YANG3,Jiaokun CAO1   

  1. 1.Key Laboratory of Space Utilization, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences Beijing 100094, China
    2.Beijing Mechanical Equipment Institute, Beijing 100040, China
    3.School of Aeronautic Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
  • Received:2019-10-07 Revised:2019-10-14 Online:2020-04-25 Published:2020-05-22
  • Contact: Dongcai GUO E-mail:guodongcai@csu.ac.cn

摘要:

部分空间科学实验对环境温度有较高的要求,环境温度高于或低于空间科学系统能够提供的热沉温度,需要有可靠有效的加温降温处理措施。使用可靠性强的热电制冷片作为制冷制热方式和气液换热器二次换热来实现环境温度控制的需求,并对不同流体温度制冷制热效果进行分析,结果表明流体温度和目标温度差越小,热电制冷制热的效果越好。在环境温度制冷工况中,热电单元数量随电流增加先减少后增加,在制热工况中则单调递减,设计中需按照制冷工况进行热电单元数量的确定。当流体温度接近制冷制热的目标温度时,会出现整个系统总效率优于热电系统效率的区间。通过对热电单元和气液换热器的组合系统的性能计算,提供一种适于热电环控系统的计算方法和部件选型思路,对空间站环控系统的设计有重要参考意义。

关键词: 热力学, 热电制冷, 热泵, 环境, 热控系统, 传热

Abstract:

Space science experiments are an important work of the space station and scientific satellites, in some space science experiments, the temperature of environment exceeds heat sink temperature range, effective heating and cooling measures are required. Thermoelectric effect has high reliability and low complexity, which is applicable for temperature control in low gravity conditions. In this paper, the effect of thermoelectric cooling and heating at different fluid temperatures is analyzed, and the results show that the smaller difference between fluid temperature and aim temperature, the better effect of thermoelectric cooling and heating effect. The quantity of thermoelectric module decreases first and then increases with increasing current in the environment temperature cooling condition, and it is monotone decreasing in the heating condition. Since the cooling condition requires more thermoelectric modules than the heating condition, the quantity of thermoelectric module is determined according to the cooling conditions. Through the analysis of the environment temperature control system under different flow rates, it can be seen that the larger the flow rate, the higher efficiency of the heat exchanger, and the higher thermal load of the thermoelectric module. As the thermoelectric thermal load has greater impact than the efficiency heat exchanger on the whole system, the total efficiency is decreasing with increasing liquid flow rate. When the fluid temperature is close to the aim temperature, the total efficiency of the thermoelectric environment temperature control system is more than the efficiency of the thermoelectric module in an interval with specific temperature and flow rate. In this paper, performance analysis methods are provided for thermoelectric cooling and heating condition, which has important reference significance for the design of space station experiment temperature control system.

Key words: thermodynamics, thermoelectric cooler, heat pump, environment, thermal control system, heat transfer

中图分类号: 

  • TK 01+8

图1

热电单元原理"

图2

制冷工况不同流量下气液换热器的液侧入口温度和热电单元热负荷"

图3

制冷工况所需的热电单元数量及总功耗"

图4

制热工况不同流量下气液换热器的液侧入口温度和热电单元热负荷"

图5

制热工况所需的热电单元数量及总功耗"

图6

制冷工况总效率和EER/COP的对比"

图7

不同温度下的制冷和制热效率比"

1 NASA. Space station research experiment [EB/OL]. [2019-10-11]. http: //www. nasa. gov/mission_pages/station/research/experiments_ category/index. html.
2 NASA. Microalgae biosynthesis in microgravity [EB/OL]. [2019-10-11]. https: //www. nasa. gov/mission_pages/station/research/experiments/explorer/Investigation. html?#id=7689.
3 Brinckmann E. ESA hardware for plant research on the international space station [J]. Advances in Space Research, 2005, 36(7): 1162-1166.
4 Barmin I, Egorov A, Senchenkov A, et al. Utilization of the “progress” transport spacecraft as an element of the international space station for experiments under μg-conditions [C]// First International Symposium on Microgravity Research & Applications in Physical Sciences and Biotechnology. 2000: 1039-1044.
5 NASA. Interfacial behaviors and heat transfer characteristics in boiling two-phase flow [EB/OL]. [2019-10-11]. https: //www. nasa. gov/mission_pages/station/research/experiments/explorer/Investigation. html?#id=1034.
6 Simon N E. Space life and biomedical sciences in support of the global exploration roadmap and societal development [J]. Space Policy, 2014, 30: 143-145.
7 Ishioka N, Suzuki H, Asashima M, et al. Development and verification of hardware for life science experiments in the Japanese experiment module “Kibo” on the international space station [J]. Journal of Gravitational Physiology: a Journal of the International Society for Gravitational Physiology, 2004, 11(1): 81-91.
8 Larson M, Croonquist A, Dick G J, et al. The science capability of the low temperature microgravity physics facility [J]. Physica B - Condensed Matter, 2003, 329: 1588-1589.
9 Donald W. Phase Ⅲ integrated water recovery testing at MSFC: international space station recipient mode test results and lessons learned [J]. Journal of Aerospace, 1997, 106(1): 715-733.
10 Stephen R. Concepts for advanced waste water processing systems [C]// 24th International Conference on Environmental Systems and 5th European Symposium on Space Environmental Control Systems.1994: 1356-1365.
11 Miernik J H, Shah B H, McGriff C F. Waste water processing technology for space station freedom: comparative test data analysis [R]. SAE Paper,1991, 1001): 1129-1140.
12 尚传勋, 周抗寒, 刘成良. 空间站尿及废水处理与再生技术试验研究[J]. 航天医学与医学工程, 1997, 10(5): 16-21.
Shang C X, Zhou K H,Liu C L. An experimental study of regeneration device for urine and water in space station [J]. Space Medicine & Medical Engineering, 1997, 10(5): 16-21.
13 苏娜娜. 基于特殊环境要求的电气部件温度适应性加固技术研究[D]. 北京: 中国科学院研究生院, 2016.
Su N N. Research of thermal adaptability reinforcement technology for electrical parts used in special environment [D]. Beijing: University of Chinese Academy of Sciences, 2016.
14 梅源, 战栋栋, 钱吉裕. 基于热电致冷的雷达高频箱环控技术研究[J]. 电子机械工程, 2010, 26(4): 18-21.
Mei Y, Zhan D D, Qian J Y. Environmental control design of radar HF equipments case based on TEC technique [J]. Electro-mechanical Engineering, 2010, 26(4): 18-21.
15 张信荣. 空间站环控生保系统热管理研究[D]. 北京: 清华大学, 2002.
Zhang X R. Thermal management of environment control and life support system of space stations [D]. Beijing: Tsinghua University, 2002.
16 Zebarjadi M, Esfarjani K, Dresselhaus M S, et al. Perspectives on thermoelectrics: from fundamentals to device applications [J]. Energy and Environmental Science, 2012, 5(1): 5147-5162.
17 Alleno E, Lamquembe N, Cardoso G R, et al. A thermoelectric generator based on an n-type clathrate and a p-type skutterudite unicouple [J]. Physica Status Solidi A - Applications and Materials Science, 2014, 211(6): 1293-1300.
18 Semena N P. The features of application of thermoelectric converters in spacecraft systems of temperature control [J]. Thermophysics and Aeromechanics, 2013, 20(2): 211-222.
19 Gaurav K, Pandey S K. Efficiency calculation of a thermoelectric generator for investigating the applicability of various thermoelectric materials [J]. Journal of Renewable and Sustainable Energy, 2017, 9(1): 014701.
20 Bugby D, Zimbeck W, Kroliczek E. Thermal management architecture for future responsive spacecraft [C]// Space, Propulsion & Energy Sciences International Forum Spesif. 2009: 30-38.
21 胡浩茫, 葛天舒, 代彦军, 等. 热电制冷技术最新进展: 从材料到应用 [J]. 制冷技术, 2016, 36(5): 42-52.
Hu H M, Ge T S, Dai Y J, et al. Up to date development of thermoelectric refrigeration technology: from material to application [J]. Chinese Journal of Refrigeration Technology, 2016, 36(5): 42-52.
22 刘忠兵. 气温自适应墙体与热电空调系统性能研究[D]. 长沙: 湖南大学, 2016.
Liu Z B. Study on the performance of self-adaptive wall and thermoelectric air conditioning system [D]. Changsha: Hunan University, 2016.
23 吕朋. 基于热电制冷技术的热响应测试系统研制[D]. 长春: 吉林大学, 2012.
Lyu P. Development of thermal response test system based on thermoelectric refrigeration technology [D]. Changchun: Jilin University, 2012.
24 张博, 王亚雄. 热电制冷液体冷却散热器的实验研究[J]. 化工学报, 2014, 65(9): 3441-3446.
Zhang B, Wang Y X. An experimental investigation on a novel liquid thermoelectric cooling device [J]. CIESC Journal, 2014, 65(9): 3441-3446.
25 王坤, 薛庆峰, 刘明亮, 等. 热电式车载冷暖箱降温特性影响因素研究与方案优化[J]. 制冷技术, 2016, 36(4): 68-74.
Wang K, Xue Q F, Liu M L, et al. Research on influencing factors of cooling characteristics and scheme optimization for vehicle's thermoelectric cooling/heating box [J]. Chinese Journal of Refrigeration Technology, 2016, 36(4): 68-74.
26 赵举, 朱洪亮, 仇和兵, 等. 多级热电制冷数值模拟与实验研究[J]. 制冷技术, 2015, 35(4): 17-21.
Zhao J, Zhu H L, Qiu H B, et al. Numerical simulation and experimental research on multistage thermoelectric refrigeration [J]. Chinese Journal of Refrigeration Technology, 2015, 35(4): 17-21.
27 申利梅, 陈焕新, 梅佩佩, 等. 热电制冷模块热连接与电连接的性能优化分析[J]. 化工学报, 2012, 63(5): 1367-1372.
Shen L M, Chen H X, Mei P P, et al. Optimization analysis on thermal connection and electrical connection of thermoelectric refrigeration [J]. CIESC Journal, 2012, 63(5): 1367-1372.
28 石宇. 空间生物样品处理装置的研制及其地面验证[D]. 北京: 北京理工大学, 2015.
Shi Y. Development of biological sample processing equipment and ground verification [D]. Beijing: Beijing Institute of Technology, 2015.
29 梁艳丽. 功能化温度敏感色谱材料的制备及性能研究[D]. 北京: 北京理工大学, 2015.
Liang Y L. Preparation and investigation on performance of functionalized thermally response chromatographic materials [D]. Beijing: Beijing Institute of Technology, 2015.
30 张腾, 申利梅, 陈焕新, 等. 药物存储用热电除湿装置性能实验及参数优化[J]. 化工学报, 2016, 67(7): 2718-2723.
Zhang T, Shen L M, Chen H X, et al. Performance experiment of thermoelectric dehumidification device used for medicine storage and its parameter optimization [J]. CIESC Journal, 2016, 67(7): 2718-2723.
31 沙拉, 塞库利克. 换热器设计技术[M]. 程林, 译. 北京: 机械工业出版社, 2010: 104-107.
Shah R K, Sekulic D P. Fundamentals of Heat Exchanger Design [M]. Cheng L, trans. Beijing: China Machine Press, 2010: 104-107.
[1] 刘子初, 全贞花, 赵耀华, 靖赫然, 姚孟良, 刘新. 新型微通道平板热管蓄冰性能[J]. 化工学报, 2020, 71(S1): 120-128.
[2] 裴后举, 蒋彦龙, 施红, 崔永龙, 陈常栋, 钱晓辉. 基于M-L湍流模型的浮空器强迫对流换热[J]. 化工学报, 2020, 71(S1): 136-141.
[3] 李鑫郡, 陈玮玮, 鹿世化. 横流环境中压电风扇耦合射流流动换热特性[J]. 化工学报, 2020, 71(S1): 149-157.
[4] 孙苏芮, 王德昌, 张金翠, 刘振, 李延辉. 膜蓄能器放能过程的传热传质特性分析[J]. 化工学报, 2020, 71(S1): 158-165.
[5] 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171.
[6] 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186.
[7] 罗坤, 毛晓东, 庞丽萍. 新型直升机热泵空调系统驾驶舱热控性能[J]. 化工学报, 2020, 71(S1): 187-193.
[8] 陈玮玮, 方贤德, 鹿世化, 林福建, 张烨. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211.
[9] 王瑞琪, 高赞军, 杨华, 胡文超, 詹宏波. 机载冷源参数对蒸发循环系统性能的影响[J]. 化工学报, 2020, 71(S1): 212-219.
[10] 王晨, 折晓会, 张小松. 含空气净化过程的液态空气储能热力学研究[J]. 化工学报, 2020, 71(S1): 23-30.
[11] 常健佩, 黄翔, 安苗苗, 李朝阳. 蒸发冷却冷水机组的原理、性能与适用性分析[J]. 化工学报, 2020, 71(S1): 236-244.
[12] 齐玢, 段希希, 阿嵘, 江泓升. 载人航天器环热控一体化仿真分析[J]. 化工学报, 2020, 71(S1): 300-306.
[13] 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37.
[14] 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321.
[15] 孟繁鑫, 孙佳宁, 周月, 高赞军, 程定斌. 飞机环控系统空气循环机仿真建模及试验校核[J]. 化工学报, 2020, 71(S1): 328-334.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .