化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3266-3277.doi: 10.11949/0438-1157.20191076

• 能源和环境工程 • 上一篇    下一篇

优化控制R744多喷射器双温超市制冷系统

陈威(),于梅红,赵红霞()   

  1. 山东大学能源与动力工程学院,山东 济南 250061
  • 收稿日期:2019-10-07 修回日期:2020-04-07 出版日期:2020-07-05 发布日期:2020-04-29
  • 通讯作者: 赵红霞 E-mail:1950688536@qq.com;hongxia.zhao@sdu.edu.cn
  • 作者简介:陈威(1994—),男,硕士,1950688536@qq.com
  • 基金资助:
    国家自然科学基金项目(51776110)

Control optimization of R744 duo-temperature supermarket refrigeration system with multi-ejector

Wei CHEN(),Meihong YU,Hongxia ZHAO()   

  1. School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2019-10-07 Revised:2020-04-07 Online:2020-07-05 Published:2020-04-29
  • Contact: Hongxia ZHAO E-mail:1950688536@qq.com;hongxia.zhao@sdu.edu.cn

摘要:

为了使R744双温超市制冷系统在任何环境温度下都能以最高效率运行,在R744平行压缩制冷系统中增加了一个多喷射器组回路(包括气气喷射器和气液喷射器),以确保系统在高温环境下仍能以较高的效率运行。并在环境温度变化的情况下,通过自动控制阀切换多喷射增压制冷模式和平行压缩制冷模式,为此建立了系统的热力学模型。计算结果表明,当环境温度低于17.32℃时,采用平行压缩制冷模式;当环境温度高于17.32℃时,采用多喷射增压制冷模式。当环境温度从21.1℃变化到36℃时,多喷射器制冷系统的COP比平行压缩制冷系统高15.91%~32.61%。

关键词: 二氧化碳, 优化设计, 模型, 喷射器, 超市, 跨临界制冷

Abstract:

In order to make the duo-temperature R744 supermarket refrigeration system operate at maximum efficiency in any ambient temperature, a multi-ejector circuit (including gas-gas ejector and gas-liquid ejector) is added to the R744 parallel compression refrigeration system to ensure that the system can still operate at higher efficiency in high ambient temperature, and automatically switch between parallel compression refrigeration mode and boost refrigeration with multi-ejector mode with the change of ambient temperature. The thermodynamic model of the system is established. The calculation results show that when the ambient temperature is lower than 17.32℃, the parallel compression refrigeration system mode is adopted; when the ambient temperature is higher than 17.32℃, the transcritical boost refrigeration system with multi-ejector mode is adopted. When the ambient temperature changes from 21.1℃ to 36℃, the COP of the multi-ejector refrigeration system is 15.91%—32.61% higher than that of the parallel refrigeration system.

Key words: carbon dioxide, optimal design, model, ejector, supermarket, transcritical refrigeration

中图分类号: 

  • TB61+7

图1

PCR系统原理图和P-h图"

图2

MEBR系统原理图和P-h图"

图3

PCR系统COP与环境温度和气体冷却器出口压力的关系"

图4

MEBR系统COP与环境温度和气体冷却器出口压力的关系"

表1

一些气体冷却器/冷凝器重要的总结"

系统关联式应用范围
PCR系统Pgc=47.3?bar (9)tamb<2
Pgc=Psattamb+10? (10)2tamb21.1
MEBR系统Pgc=29.2642+1.9678tamb+0.0099tamb2(12)tamb21.1
Pgc=75?bar (11)tamb21.1
Pgc=24.8642+2.3441tamb+0.00198tamb2(13)tamb21.1
二氧化碳循环中温零售食品制冷系统的优化控制[7]Pgc?=44.97?bartamb<-5
Pgc?=1.352tamb+51.1-5tamb15
Pgc?=72.05 bar

15tamb17

for subcritical

Pgc?=80 bar

15tamb17

for transcritical

Pgc?=80 bar17tamb29
Pgc?=2.558tamb+5.792tamb>29
常规增压制冷系统[34]

tgc=0.6429tamb+13.571

Pgc=1.6633tgc+26.763

18tamb40
二氧化碳的解决方案[15]Pgc=43.92?bartamb<4
Pgc=Psattamb+54tamb17

tgc=0.9tamb+4.7

Pgc=1.6633tgc+26.763

17tamb27

tgc=tamb+2

75?barPgc110 bar (optimized)

tamb>27
R744增压系统[10]Pgc=45.02?bartamb<0
Pgc=Psattamb+10?0tamb18
Pgc=69?bar18tamb22
Pgc=75?bar22tamb25
Pgc=2.9211+0.10003tamb+0.00254tamb2

tamb>27

for standard transcritical booster system

Pgc=2.2487+0.13516tamb+0.0021tamb2

tamb>27

for transcritical booster system with bypass compressor

Pgc=0.362+0.25237tamb+0.0004tamb2

tamb>27

for transcritical booster system with upstream expansion valve

图5

压缩机质量流量与环境温度的关系"

图6

压缩机功耗与环境温度的关系"

图7

PCR系统的中间节流压力和环境温度之间的关系"

图8

喷射器性能指标"

图9

喷射器出口压力、效率与环境温度之间的关系"

图10

PCR系统与MEBR系统COP与环境温度的关系"

图11

OCMER系统原理图"

图12

中国四个典型城市的年平均COP分析"

13 Yu B, Yang J, Wang D, et al. An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle[J]. Energy, 2019, 189: 116147.
14 Nakagawa M, Marasigan A R, Matsukawa T, et al. Experimental investigation on the effect of mixing length on the performance of two-phase ejector for CO2 refrigeration cycle with and without heat exchanger[J]. International Journal of Refrigeration, 2011, 34(7): 1604-1613.
15 Gullo P, Hafner A, Cortella G. Multi-ejector R744 booster refrigerating plant and air conditioning system integration—a theoretical evaluation of energy benefits for supermarket applications[J]. International Journal of Refrigeration, 2017, 75: 164-176.
16 Zhang Z, Feng X, Tian D, et al. Progress in ejector-expansion vapor compression refrigeration and heat pump systems[J]. Energy Conversion and Management, 2020, 207: 112529.
17 Ghaebi H, Rostamzadeh H. Design and optimization of a novel dual-loop bi-evaporator ejection/compression refrigeration cycle[J]. Applied Thermal Engineering, 2019, 151: 240-261.
18 Gullo P, Hafner A, Banasiak K. Transcritical R744 refrigeration systems for supermarket applications: current status and future perspectives[J]. International Journal of Refrigeration, 2018, 93: 269-310.
19 Elbel S, Hrnjak P. Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation[J]. International Journal of Refrigeration, 2008, 31(3): 411-422.
20 Haida M, Banasiak K, Smolka J, et al. Experimental analysis of the R744 vapour compression rack equipped with the multi-ejector expansion work recovery module[J]. International Journal of Refrigeration, 2016, 64: 93-107.
21 Hafner A, Försterling S, Banasiak K. Multi-ejector concept for R-744 supermarket refrigeration[J]. International Journal of Refrigeration, 2014, 43: 1-13.
22 Geng L, Liu H, Wei X, et al. Energy and exergy analyses of a bi-evaporator compression/ejection refrigeration cycle[J]. Energy Conversion and Management, 2016, 130: 71-80.
23 Lawrence N, Elbel S. Experimental investigation on control methods and strategies for off-design operation of the transcritical R744 two-phase ejector cycle[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2019, 106: 570-582.
24 Ge Y T, Tassou S A. Thermodynamic analysis of transcritical CO2 booster refrigeration systems in supermarket[J]. Energy Conversion and Management, 2011, 52(4): 1868-1875.
1 Molina M J, Rowland F S. Stratospheric sink for chlorofluoromethanes: chlorine atomc-atalysed destruction of ozone[J]. Nature, 1974, 249(5460): 810-812.
2 Purohit N, Gullo P, Dasgupta M S. Comparative assessment of low-GWP based refrigerating plants operating in hot climates[J]. Energy Procedia, 2017, 109: 138-145.
25 王振超, 陈江平, 陈洪祥, 等. CO2在大、中型超市制冷系统中的应用[J]. 制冷技术, 2009,(1): 33-39.
Wang Z C, Chen J P, Chen H X, et al. Application of CO2 in refrigeration systems of large/medium size supermarkets[J]. Refrigeration technology, 2009,(1): 33-39.
26 魏晋, 李涛, 唐黎明, 等. 四种跨临界CO2压缩式热泵系统的热力性能研究[J]. 制冷与空调(北京), 2014, 14: 94-103.
Wei J, li T, Tang L M, et al. Study on thermodynamic performance of four different types of transcritical CO2 compression heat pump systems[J]. Refrigeration and Air conditioning (Beijing), 2014, 14: 94-103.
27 Zhao H, Zhang K, Wang L, et al. Thermodynamic investigation of a booster-assisted ejector refrigeration system[J]. Applied Thermal Engineering, 2016, 104: 274-281.
28 Haida M, Smolka J, Palacz M, et al. Numerical investigation of an R744 liquid ejector for supermarket refrigeration systems[J]. Thermal Science, 2016, 20(4): 1259-1269.
29 Minetto S, Brignoli R, Zilio C, et al. Experimental analysis of a new method for overfeeding multiple evaporators in refrigeration systems[J]. International Journal of Refrigeration, 2014, 38: 1-9.
30 Ge Y, Cropper R. Air-cooled condensers in retail systems using R22 and R404A refrigerants[J]. Applied Energy, 2004, 78(1): 95-110.
31 Girotto S, Minetto S, Neksa P. Commercial refrigeration system using CO2 as the refrigerant[J]. International Journal of Refrigeration, 2004, 27(7): 717-723.
32 Llopis R, Nebot-Andrés L, Cabello R, et al. Experimental evaluation of a CO2 transcritical refrigeration plant with dedicated mechanical subcooling[J]. International Journal of Refrigeration, 2016, 69: 361-368.
33 Lucas C, Koehler J. Experimental investigation of the COP improvement of a refrigeration cycle by use of an ejector[J]. International Journal of Refrigeration, 2012, 35(6): 1595-1603.
34 Gullo P, Elmegaard B, Cortella G. Energy and environmental performance assessment of R744 booster supermarket refrigeration systems operating in warm climates[J]. International Journal of Refrigeration, 2016, 64: 61-79.
3 Harby K. Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: an updated overview[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 1247-1264.
4 Mota-Babiloni A, Navarro-Esbrí J, Á Barragán-Cervera, et al. Commercial refrigeration—an overview of current status[J]. International Journal of Refrigeration, 2015, 57: 186-196.
5 Makhnatch P, Mota-Babiloni A, Rogstam J, et al. Retrofit of lower GWP alternative R449A into an existing R404A indirect supermarket refrigeration system[J]. International Journal of Refrigeration, 2017, 76: 184-192.
6 Sun Z, Wang Q, Dai B, et al. Options of low global warming potential refrigerant group for a three-stage cascade refrigeration system[J]. International Journal of Refrigeration, 2019, 100: 471-483.
7 Ge Y T, Tassou S A. Control optimisation of CO2 cycles for medium temperature retail food refrigeration systems[J]. International Journal of Refrigeration, 2009, 32(6): 1376-1388.
8 Tsamos K M, Ge Y T, Santosa I, et al. Energy analysis of alternative CO2 refrigeration system configurations for retail food applications in moderate and warm climates[J]. Energy Conversion and Management, 2017, 150: 822-829.
9 Llopis R, Sanchez D, Sanz-Kock C, et al. Energy and environmental comparison of two-stage solutions for commercial refrigeration at low temperature: fluids and systems[J]. Applied Energy, 2015, 138: 133-142.
10 Sharma V, Fricke B, Bansal P. Comparative analysis of various CO2 configurations in supermarket refrigeration systems[J]. International Journal of Refrigeration, 2014, 46: 86-99.
11 Gupta D K, Dasgupta M S. Simulation and performance optimization of finned tube gas cooler for trans-critical CO2 refrigeration system in Indian context[J]. International Journal of Refrigeration, 2014, 38: 153-167.
12 Chesi A, Esposito F, Ferrara G, et al. Experimental analysis of R744 parallel compression cycle[J]. Applied Energy, 2014, 135: 274-285.
[1] 李攀, 孔慧, 宋卓栋, 张作毅, 王云芳. 甲醇-甲醛-聚甲氧基二甲醚三元体系汽液平衡[J]. 化工学报, 2020, 71(S1): 7-14.
[2] 裴后举, 蒋彦龙, 施红, 崔永龙, 陈常栋, 钱晓辉. 基于M-L湍流模型的浮空器强迫对流换热[J]. 化工学报, 2020, 71(S1): 136-141.
[3] 张行, 庞丽萍, 王莹. 某型运输机飞行状态下冷凝器风道性能[J]. 化工学报, 2020, 71(S1): 166-171.
[4] 汪宁, 张学军, 赵阳, 甘智华, 张春伟, 余萌. 基于斯特林制冷机的文物恒湿展柜设计及实验研究[J]. 化工学报, 2020, 71(S1): 179-186.
[5] 方黄峰, 刘瑶瑶, 张文彪. 基于LSTM神经网络的流化床干燥器内生物质颗粒湿度预测[J]. 化工学报, 2020, 71(S1): 307-314.
[6] 张庭玮, 李斌, 翟晓强. 基于理论的传热结构拓扑优化[J]. 化工学报, 2020, 71(S1): 31-37.
[7] 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321.
[8] 史璐璐. 大型民用飞机座舱区域多级温度控制系统的研究[J]. 化工学报, 2020, 71(S1): 322-327.
[9] 周月, 张鹤林, 程定斌, 尹俊成. 典型空气循环制冷系统仿真研究[J]. 化工学报, 2020, 71(S1): 341-345.
[10] 刘博文, 邓帅, 李双俊, 赵力, 杜振宇, 陈丽锦. 变温吸附碳捕集系统能效性能实验研究[J]. 化工学报, 2020, 71(S1): 382-390.
[11] 马慧才, 刘毅玲, 党晓民. 高空长航时无人机综合热能管理的构型分析[J]. 化工学报, 2020, 71(S1): 417-424.
[12] 马德胜, 庞丽萍, 毛晓东, 董素君. 机载综合环控系统的热管理[J]. 化工学报, 2020, 71(S1): 436-440.
[13] 于仙毅, 巫江虹, 高云辉. 基于主成分分析与支持向量机的热泵系统制冷剂泄漏识别研究[J]. 化工学报, 2020, 71(7): 3151-3164.
[14] 王鹏, 刘京雷, 张胜中, 范得权, 张英, 徐宏. 结构化5A分子筛吸附床结构及工艺参数对N2/H2吸附性能的影响[J]. 化工学报, 2020, 71(7): 3114-3122.
[15] 姜岩, 张哲. 不同亲水特性VOCs在生物滴滤工艺中的作用规律[J]. 化工学报, 2020, 71(7): 2973-2982.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邓利, 王晓静, 聂开立, 王芳, 刘军峰, 王璞, 谭天伟. Synthesis of Wax Esters by Lipase-catalyzed Esterification with Immobilized Lipase from Candida sp. 99-125[J]. CIESC Journal, 2011, 19(6): 978 -982 .
[2] 曹相生, 付昆明, 钱栋, 朱兆亮, 孟雪征. 甲醇为碳源时C/N对反硝化过程中亚硝酸盐积累的影响 [J]. 化工学报, 2010, 61(11): 2939 -2943 .
[3] 张政,谢灼利. 流体-固体两相流的数值模拟 [J]. CIESC Journal, 2001, 52(1): 1 -12 .
[4] 吴祖成,李伟. UV/H_2O_2系统光催化氧化降解苯酚废水 [J]. CIESC Journal, 2001, 52(3): 277 -280 .
[5] 曹睿, 刘艳升, 严超宇, 王东升, 仵浩. 垂直锐边孔口的自由出流特性(Ⅰ)流动状态和孔结构参数对孔流系数的影响 [J]. 化工学报, 2008, 59(9): 2175 -2180 .
[6] 庄震万. 宾汉型塑性流体在圆管内层流流动时的放热规律 [J]. CIESC Journal, 1980, 31(4): 405 -412 .
[7] 赵选英, 王同华, 李琳, 刘颖, 曹义鸣. Fe/C杂化炭膜的制备及其气体分离性能 [J]. 化工学报, 2009, 60(9): 2232 -2236 .
[8] 张永峰, 刘晓宁, 魏荣卿, 黄恒. 原子转移自由基聚合法合成PS-g-PMMA [J]. 化工学报, 2009, 60(10): 2621 -2627 .
[9] 陈光文, 袁权. 微化工技术 [J]. 化工学报, 2003, 54(4): 427 -439 .
[10] 刘昕;吕秀阳;夏文莉;任其龙 .

高温液态水中有机酸对果糖分解反应动力学的影响

[J]. CIESC Journal, 2006, 57(1): 52 -56 .