化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 382-390.doi: 10.11949/0438-1157.20191075

• 能源和环境工程 • 上一篇    下一篇

变温吸附碳捕集系统能效性能实验研究

刘博文1,2(),邓帅1,2(),李双俊1,2,赵力1,杜振宇1,2,陈丽锦1,2   

  1. 1.中低温热能高效利用教育部重点实验室(天津大学),天津 300350
    2.超低能耗碳捕集国际联合研究中心,天津大学,天津 300350
  • 收稿日期:2019-10-07 修回日期:2019-10-14 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 邓帅 E-mail:liubowen_me@tju.edu.cn;sdeng@tju.edu.cn
  • 作者简介:刘博文(1994—),男,硕士研究生,liubowen_me@tju.edu.cn
  • 基金资助:
    国家自然科学基金项目(51876134)

Experimental investigation on energy-efficiency performance of temperature swing adsorption system for CO2 capture

Bowen LIU1,2(),Shuai DENG1,2(),Shuangjun LI1,2,Li ZHAO1,Zhenyu DU1,2,Lijin CHEN1,2   

  1. 1.Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin University), Ministry of Education of China, Tianjin 300350, China
    2.International Cooperation Research Centre of Carbon Capture in Ultra-low Energy-consumption, Tianjin University, Tianjin 300350, China
  • Received:2019-10-07 Revised:2019-10-14 Online:2020-04-25 Published:2020-05-22
  • Contact: Shuai DENG E-mail:liubowen_me@tju.edu.cn;sdeng@tju.edu.cn

摘要:

燃烧后CO2捕集技术(PCC)因易于与既有电厂结合而被认为是一项减少二氧化碳排放的重要技术。化学吸收、吸附和膜分离是PCC的主流技术。在CO2吸附技术类中,变温吸附(TSA)是一种有效的吸附方法。近年来,TSA技术的能源消耗和能源转换效率问题成为人们对其大规模部署的关注焦点。然而,大多数的研究都是将数学模型和仿真方法应用于TSA的性能评估,缺乏足够的实验研究支持。为了对TSA系统的能源转化效率进行实验分析,开发了一套四步法TSA系统,能效性能是基本分离性能外的主要考察指标。实验采用沸石13X-APG作为吸附剂材料,根据实验测得的两组吸附等温线,计算了CO2/N2的吸附选择性系数。通过进气CO2浓度、解吸时间、吸附温度和解吸温度对纯度、回收率、单位能耗和第二定律效率的影响分析,得到了4组实验结果。结果表明,第二定律效率的范围为3.24%~9.23%,回收率和纯度最高分别为83.97%和94.70%。解吸温度和进气CO2浓度的升高,吸附温度的降低有利于分离及能效性能提升。延长解吸时间有利于分离和能效提升,但过长的操作时间反而使得效果变差,这会对工程中的运行策略优化产生积极的指导意义。

关键词: 实验研究, 二氧化碳捕集, 吸附(作用), 分离, 能效

Abstract:

Post-combustion CO2 capture (PCC) is considered to be an important technology for reducing carbon dioxide emissions owing to its easy retrofit to power plants. Chemical absorption, adsorption and membrane separation are typical mainstreams in PCC. In technological cluster of CO2 adsorption, temperature swing adsorption (TSA) is one of efficient methods. In recent years, the topic on energy consumption and energy efficiency of TSA is emerging as an urgent response to the possible large-scale deployment of CCS. However, most studies apply mathematical model and simulation method for performance assessment for TSA, without enough specific supports from experiment researches. To conduct an experiment-guided analysis on the energy-efficiency of TSA, a 4-step TSA apparatus was designed and developed. The separation and energy-efficiency performance are the main performance indicators in the analysis. Zeolite 13X-APG was employed in experiment and its selectivity of CO2 over N2 was obtained according to isotherms of two components measured experimentally. Four groups of experiment results were obtained for affect analysis from CO2 concentration, desorption duration, adsorption temperature and desorption temperature to the purity, recovery rate, specific energy consumption and second-law efficiency. The results show that the range of second-law efficiency is between 3.24% and 9.23% with the maximum recovery rate of 83.97% and purity of 94.70%. Increase of desorption temperature and CO2 concentration, decrease of adsorption temperature lead to the improvement of separation and energy-efficiency performance. Extending the desorption time benefits the separation performance. However, such longer operation time probably causes a bad performance, which may be propitious to the optimization of operation strategy for TSA system.

Key words: experimental investigation, CO2 capture, adsorption, separation, energy efficiency

中图分类号: 

  • TK 11

图1

吸附法碳捕集技术能耗调研"

图2

四步法TSA系统"

图3

四步法TSA系统实物"

表1

吸附腔及系统运行参数"

参数名称数值
吸附腔外径/mm80
吸附腔长度/mm760
腔体壁厚/mm2
腔内换热管外径/mm10
腔内换热管总长/mm1463
腔内换热管壁厚/mm1
进气压力/kPa100
进气流量/(L·s-1)0.13

图4

四步法TSA循环"

图5

运行参数对系统能效性能影响实验组织思路"

图6

CO2和N2在沸石13X-APG上的吸附等温线及Toth模型拟合结果"

表2

Toth模型参数"

参数CO2N2
qm/(mol·kg-1)5.4451.014
k0/Pa-15.330×10-92.260×10-8
ΔH/(kJ·mol-1)-26.05-13.36
n0.55060.4376

表3

吸附剂工作容量及CO2/N2选择性系数"

CO2浓度/%吸附温度/K解吸温度/KS
152883638.579
152883739.614
1528838310.51
1528036311.72
1527336312.20
1728836311.44
1928836312.27

图7

解吸时长对系统影响"

图8

进气CO2浓度对系统分离及能效性能影响"

图9

吸附温度对系统分离及能效性能影响"

图10

解吸温度对系统分离及能效性能影响"

1 Special report on global warming of 1.5℃ [R]. Incheon, South Korea: Intergovernmental Panel on Climate Change (IPCC), 2018.
2 Ling H, Liu S, Gao H, et al. Effect of heat-stable salts on absorption/desorption performance of aqueous monoethanolamine (MEA) solution during carbon dioxide capture process [J]. Separation and Purification Technology, 2019, 212: 822-833.
3 Liu Z, Wang L, Kong X, et al. Onsite CO2 capture from flue gas by an adsorption process in a coal-fired power plant [J]. Industrial & Engineering Chemistry Research, 2012, 51(21): 7355-7363.
4 Wawrzyńczak D, Majchrzak-Kucęba I, Srokosz K, et al. The pilot dual-reflux vacuum pressure swing adsorption unit for CO2 capture from flue gas [J]. Separation and Purification Technology, 2019, 209: 560-570.
5 Mendes P A P, Ribeiro A M, Gleichmann K, et al. Separation of CO2/N2 on binderless 5A zeolite [J]. Journal of CO2 Utilization, 2017, 20: 224-233.
6 Yan H, Fu Q, Zhou Y, et al. CO2 capture from dry flue gas by pressure vacuum swing adsorption: a systematic simulation and optimization [J]. International Journal of Greenhouse Gas Control, 2016, 51: 1-10.
7 Cho S H, Park J H, Beum H T, et al. A 2-stage PSA process for the recovery of CO2 from flue gas and its power consumption [J]. Studies in Surface Science & Catalysis, 2004, 153(4): 405-410.
8 Park J, Beum H, Kim J, et al. Numerical analysis on the power consumption of the PSA process for recovering CO2 from flue gas [J]. Industrial & Engineering Chemistry Research, 2002, 41(16): 4122-4131.
9 Shen C, Liu Z, Li P, et al. Two-stage VPSA process for CO2 capture from flue gas using activated carbon beads [J]. Industrial & Engineering Chemistry Research, 2012, 51(13): 5011-5021.
10 Hosseini S F, Talaie M R, Aghamiri S, et al. Mathematical modeling of rapid temperature swing adsorption; the role of influencing parameters [J]. Separation and Purification Technology, 2017, 183: 181-193.
11 Hefti M, Joss L, Bjelobrk Z, et al. On the potential of phase-change adsorbents for CO2 capture by temperature swing adsorption [J]. Faraday Discussions, 2016, 192: 153-179.
12 Joss L, Gazzani M, Mazzotti M. Rational design of temperature swing adsorption cycles for post-combustion CO2 capture [J]. Chemical Engineering Science, 2017, 158: 381-394.
13 Merel J, Clausse M, Meunier F. Experimental Investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites [J]. Industrial & Engineering Chemistry Research, 2008, 47(1): 209-215.
14 Osaka Y, Tsujiguchi T, Kodama A. Experimental investigation on the CO2 separation performance from humid flue gas by TSA process [J]. Separation and Purification Technology, 2018, 207: 77-82.
15 Ntiamoah A, Ling J, Xiao P, et al. CO2 Capture by temperature swing adsorption: use of hot CO2 -rich gas for regeneration [J]. Industrial & Engineering Chemistry Research, 2016, 55(3): 703-713.
16 Zhao Q, Wu F, He Y, et al. Impact of operating parameters on CO2 capture using carbon monolith by electrical swing adsorption technology (ESA) [J]. Chemical Engineering Journal, 2017, 327: 441-453.
17 Lillia S, Bonalumi D, Grande C, et al. A comprehensive modeling of the hybrid temperature electric swing adsorption process for CO2 capture [J]. International Journal of Greenhouse Gas Control, 2018, 74: 155-173.
18 Song C, Kansha Y, Fu Q, et al. Reducing energy consumption of advanced PTSA CO2 capture process ― experimental and numerical study [J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64: 69-78.
19 Wurzbacher J A. Development of a temperature-vacuum swing process for CO₂ capture from ambient air [J]. Mission Reports of Visiting Experts J., 2015, 11(2): 74-84.
20 Ishibashi M, Ota H, Akutsu N, et al. Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method [J]. Energy Conversion & Management, 1996, 37(6/7/8): 929-933.
21 Zhao R, Zhao L, Deng S, et al. A comparative study on CO2 capture performance of vacuum-pressure swing adsorption and pressure-temperature swing adsorption based on carbon pump cycle [J]. Energy, 2017, 137: 495-509.
22 Ben-Mansour R, Qasem N A A. An efficient temperature swing adsorption (TSA) process for separating CO2 from CO2/N2 mixture using Mg-MOF-74 [J]. Energy Conversion and Management, 2018, 156: 10-24.
23 Santra B. Molecular rearrangement of trinuclear Cu(I)-NHC: synthesis of mono, binuclear and polymeric Cu(I)-NHCs [J]. Chemistry Select, 2019, 4(6): 1866-1871.
24 Zhou H C, Long J R, Yaghi O M. Introduction to metal-organic frameworks [J]. Chemical Reviews, 2012, 112(2): 673-674.
25 Zhang W, Liu H, Sun C, et al. Capturing CO2 from ambient air using a polyethyleneimine-silica adsorbent in fluidized beds [J]. Chemical Engineering Science, 2014, 116: 306-316.
26 Zhao R, Deng S, Liu Y, et al. Carbon pump: Fundamental theory and applications [J]. Energy, 2017, 119: 1131-1143.
27 Zhao R, Deng S, Zhao L, et al. Performance analysis of temperature swing adsorption for CO2 capture using thermodynamic properties of adsorbed phase [J]. Applied Thermal Engineering, 2017, 123: 205-215.
28 Tao L, Xiao P, Qader A, et al. CO2 capture from high concentration CO2 natural gas by pressure swing adsorption at the CO2 CRC Otway site, Australia [J]. International Journal of Greenhouse Gas Control, 2019, 83: 1-10.
29 Liu B, Shi J, Yue K, et al. Distinct temperature-dependent CO2 sorption of two isomeric metal-organic frameworks [J]. Crystal Growth & Design, 2014, 14(4): 2003-2008.
[1] 胡松, 李进龙, 杨卫胜. 环氧丙烷尾气甲醇吸收及纯化工艺[J]. 化工学报, 2020, 71(4): 1657-1665.
[2] 亓士超, 朱蓉蓉, 刘昕, 薛丁铭, 刘晓勤, 孙林兵. 乙二胺不同掺杂模式下多孔有机聚合物对CO2的吸附[J]. 化工学报, 2020, 71(4): 1666-1675.
[3] 黄耀波, 刘佳新, 徐祖华, 赵均, 邵之江. 基于PWA融合模型的注塑过程保压段建模及控制策略[J]. 化工学报, 2020, 71(3): 1103-1110.
[4] 李韵浩, 李艾艾, 杨斌斌, 余俊杰, 王开珍, 周勇, 高从堦. 溶胀嵌入脂肪酸分子制备高脱硼反渗透膜[J]. 化工学报, 2020, 71(3): 1343-1351.
[5] 徐燕青, 李文飞, 吴梦瑶, 沈江南. 用于喷墨印花染料纯化的自组装GO/TiO2复合纳滤膜的制备[J]. 化工学报, 2020, 71(3): 1352-1361.
[6] 刘丽雪, 张少峰, 赵长伟, 宝乐尔呼, 俞灵, 王军. β-环糊精为水相单体的复合纳滤膜制备及染料截留性能[J]. 化工学报, 2020, 71(2): 889-898.
[7] 高思鸿, 刘堉学, 范怡平, 卢春喜. 新型旋流场-颗粒床耦合分离设备静压分布[J]. 化工学报, 2020, 71(2): 516-525.
[8] 刘佳佳, 付雪, 许映杰. 离子液体吸收分离一氧化碳的研究进展[J]. 化工学报, 2020, 71(1): 138-147.
[9] 常苗, 刘磊, 阳庆元, 刘大欢, 仲崇立. 水热稳定金属-有机骨架材料用于高效分离SF6/N2混合物的研究[J]. 化工学报, 2020, 71(1): 320-328.
[10] 杨凯, 阮雪华, 代岩, 王佳铭, 贺高红. 氨基MIL-101(Cr)强化CO2分离性能的混合基质膜优化制备[J]. 化工学报, 2020, 71(1): 329-336.
[11] 崔国凯,吕书贞,王键吉. 功能化离子液体在二氧化碳吸收分离中的应用[J]. 化工学报, 2020, 71(1): 16-25.
[12] 张鹏,陈赞,吴洪,张润楠,杨磊鑫,游昕达,安珂,姜忠义. 石墨烯基CO2分离膜通道微环境调控研究进展[J]. 化工学报, 2020, 71(1): 54-67.
[13] 汪彬, 李江道, 黄永华, 吴静怡, 王天祥, 雷刚. 节流参数对液氮贮箱热力排气系统运行特性的影响[J]. 化工学报, 2019, 70(S2): 101-107.
[14] 张强,王良璧. 润滑脂传质分离特性规律实验研究[J]. 化工学报, 2019, 70(S2): 294-300.
[15] 曾昭文, 郑成, 毛桃嫣, 魏渊, 肖润辉, 彭思玉. 微波在化工过程中的研究及应用进展[J]. 化工学报, 2019, 70(S1): 1-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .