化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 252-260.doi: 10.11949/0438-1157.20191063

• 分离工程 • 上一篇    下一篇

电纺zein-SLS纤维膜的制备及其离子吸附性能研究

武君媛(),霍伟智,李志强,曾嘉恒,江燕斌()   

  1. 华南理工大学化学与化工学院,广东 广州 510641
  • 收稿日期:2019-09-23 修回日期:2019-12-17 出版日期:2020-04-25 发布日期:2019-12-18
  • 通讯作者: 江燕斌 E-mail:201630365082@mail.scut.edu.cn;cebjiang@scut.edu.cn
  • 作者简介:武君媛(1998—),女,本科,201630365082@mail.scut.edu.cn
  • 基金资助:
    国家自然科学基金项目(21776102);华南理工大学SRP项目(X201910561238)

Preparation of coaxial electrospun zein nanofiber film embedding sodium lignosulfonate for enhanced adsorption of heavy metal ions

Junyuan WU(),Weizhi HUO,Zhiqiang LI,Jiaheng ZENG,Yanbin JIANG()   

  1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
  • Received:2019-09-23 Revised:2019-12-17 Online:2020-04-25 Published:2019-12-18
  • Contact: Yanbin JIANG E-mail:201630365082@mail.scut.edu.cn;cebjiang@scut.edu.cn

摘要:

选用玉米醇溶蛋白(zein)作为鞘层包裹材料、木质素磺酸钠(SLS)作为芯层强化材料,采用同轴电纺技术制备了可有效吸附重金属离子的zein-SLS纤维膜。优化了膜制备工艺条件,确定纺丝电压适宜为14 kV,芯鞘层进料速率比适宜为1∶1。TEM证实,SLS被成功包埋于zein纤维膜中,但其负载量、包埋率和流失率受溶液pH的影响。离子吸附测试结果表明,SLS的加入可强化zein纤维膜对三种金属离子Ni2+、Zn2+、Cd2+的吸附效果,其中对Zn2+吸附能力的强化效果最为显著,上述吸附过程符合准二级吸附动力学模型。同时,在酸性条件下,随着pH的上升,zein纤维膜对Ni2+、Zn2+、Cd2+的吸附能力逐渐提高。

关键词: 同轴电纺, 玉米醇溶蛋白, 木质素磺酸钠, 膜, 制备, 重金属离子, 吸附

Abstract:

In order to fabricate nanofiber film with enhanced adsorption capacity for heavy metal ions, the coaxial electrospinning was utilized to embed sodium lignosulfonate (SLS) in electrospun zein fibers. The process parameters were optimized, i.e. the electrospinning voltage is 14 kV and the core-to-sheath flow rate ratio is 1∶1. The TEM results indicated that SLS was embedded in electrospun zein films successfully. However, its loading capacity, encapsulation efficiency and loss ratio were influenced by the pH of solution. The results of metal ion adsorption tests indicated that SLS enhanced adsorption capacity of Ni2+, Zn2+ and Cd2+, among which Zn2+ is the most significant. The pseudo-second-order model was more suitable to describe the adsorption. Furthermore, the adsorption capacity of these three metal ions increased with increasing pH of the solution under acidic conditions.

Key words: coaxial electrospinning, zein, sodium lignosulfonate, film, preparation, heavy metal ions, adsorption

中图分类号: 

  • TQ 341.5

图1

不同纺丝电压下zein-SLS同轴纤维SEM"

图2

不同进料速率比下的zein-SLS同轴纤维扫描电镜图"

图3

三种zein电纺纤维膜的实物外观照片"

图4

三种电纺纤维的SEM"

图5

三种电纺纤维的TEM"

图6

SLS改性强化前后zein纤维膜的力学性能"

图7

不同pH下zein-SLS纤维膜的负载量和包埋率(a)及流失率(b)"

图8

三种纤维膜对Ni2+、Zn2+ 和Cd2+的吸附量与吸附时间的关系"

表1

两种动力学模型的拟合参数"

离子种类纤维膜种类相关系数平方R2
准一级模型准二级模型
Ni2+zein-zein0.97310.9962
zein-00.90790.9948
zein-SLS0.84010.9906
Zn2+zein-zein0.91290.9949
zein-00.97090.9875
zein-SLS0.94510.9895
Cd2+zein-zein0.93700.9781
zein-00.85210.9886
zein-SLS0.90970.9885

图9

不同pH下三种纤维膜对Ni2+、Zn2+ 和Cd2+的平衡吸附量"

1 Sun X Q, Peng B, Ji Y, et al. Chitosan(chitin)/ cellulose composite biosorbents prepared using ionic liquid for heavy metal ions adsorption[J]. AIChE Journal, 2009, 55(8): 2062-2069.
2 Wen Y, Tang Z R, Chen Y, et al. Adsorption of Cr(Ⅵ) from aqueous solutions using chitosan-coated fly ash composite as biosorbent[J]. Chemical Engineering Journal, 2011, 175: 110-116.
3 周婷. 木质素磺酸盐的化学改性及其对金属离子络合性能的研究[D]. 广州: 华南理工大学, 2013.
Zhou T. Study on the chemical modification of lignosulfonates and its complexing capacity with metal ions[D]. Guangzhou: South China University of Technology, 2013.
4 Liu D G, Li Z H, Li W, et al. Adsorption behavior of heavy metal ions from aqueous solution by soy protein hollow microspheres[J]. Industrial & Engineering Chemistry Research, 2013, 52(32): 11036-11044.
5 Shukla R, Cheryan M. Zein: the industrial protein from corn[J]. Industrial Crops and Products, 2001, 13(3): 171-192.
6 Liu G J, Pang J F, Huang Y N, et al. Self-assembled nanospheres of folate-decorated zein for the targeted delivery of 10-hydroxycamptothecin [J]. Industrial & Engineering Chemistry Research, 2017, 56(30): 8517-8527.
7 Wei D W, Huo W Z, Li G M, et al. The combined effects of lysozyme and ascorbic acid on microstructure and properties of zein-based films [J]. Chinese Journal of Chemical Engineering, 2018, 26(3): 648-656.
8 Kim S, Xu J. Aggregate formation of zein and its structural inversion in aqueous ethanol[J]. Journal of Cereal Science, 2008, 47(1): 1-5.
9 Panchapakesan C, Sozen N, Dogan H, et al. Effect of different fractions of zein on the mechanical and phase properties of zein films at nano-scale[J]. Journal of Cereal Science, 2012, 55(2): 174-182.
10 Fu J X, Wang H J, Zhou Y Q, et al. Antibacterial activity of ciprofloxacin-loaded zein microsphere films[J]. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2009, 29(4): 1161-1166.
11 Yoshino T, Isobe S, Maekawa T. Physical evaluation of pure zein films by atomic force microscopy and thermal mechanical analysis[J]. Journal of the American Oil Chemists Society, 2000, 77(7): 699-704.
12 Padgett T, Han I Y, Dawson P L. Incorporation of food-grade antimicrobial compounds into biodegradable packaging films[J]. Journal of Food Protection, 1998, 61(10): 1330-1335.
13 Liu Y H, Nie W, Mu Y B, et al. A synthesis and performance evaluation of a highly efficient ecological dust depressor based on the sodium lignosulfonate-acrylic acid graft copolymer[J]. RSC Advances, 2018, 8(21): 11498-11508.
14 Li Z L, Ge Y Y, Wan L. Fabrication of a green porous lignin-based sphere for the removal of lead ions from aqueous media[J]. Journal of Hazardous Materials, 2015, 285: 77-83.
15 Liang F B, Song Y L, Huang C P, et al. Synthesis of novel lignin-based ion-exchange resin and its utilization in heavy metals removal[J]. Industrial & Engineering Chemistry Research, 2013, 52(3): 1267-1274.
16 王珏珏. 吸附重金属水凝胶的制备及其在冶金污泥资源化中的应用[D]. 武汉: 武汉工程大学, 2017.
Wang J J. Adsorption of heavy metal in the preparation of hydrogels and its application in metallurgical sludge[D]. Wuhan: Wuhan Institute of Technology, 2017.
17 王文栋, 张健伟, 郑积烽, 等. 三聚氰胺改性木质素的制备及银离子吸附性能[J]. 化工学报, 2013, 64(4): 1478-1484.
Wang W D, Zhang J W, Zheng J F, et al. Preparation of melamine-modified lignin and its adsorption performance for silver ion[J]. CIESC Journal, 2013, 64(4): 1478-1484.
18 丁春立, 林帝出, 王德武, 等. 电纺及疏水改性制备CA/SiNPs-FAS超疏水复合膜及膜蒸馏脱盐研究[J]. 化工学报, 2018, 69(4): 1774-1782.
Ding C L, Lin D C, Wang D W, et al. Preparation of superhydrophobic CA/SiNPs-FAS electrospun nanofibrous membranes for direct contact membrane distillation [J]. CIESC Journal, 2018, 69(4): 1774-1782.
19 汪怀远, 肖博, 王池嘉, 等. 静电纺丝法制备氧化钛-氧化石墨复合载体的加氢脱硫性能[J]. 化工学报, 2015, 66(7): 2514-2520.
Wang H Y, Xiao B, Wang C J, et al. Hydrodesulfurization performance of TiO2-graphene oxide composite support prepared by electro-spinning[J]. CIESC Journal, 2015, 66(7): 2514-2520.
20 Song J, Zhang B W, Lu Z H, et al. Hierarchical porous poly(L‑lactic acid) nanofibrous membrane for ultrafine particulate aerosol filtration[J]. ACS Applied Materials & Interfaces, 2019, 11: 46261-46268.
21 Liao Y, Loh C H, Tian M, et al. Progress in electrospun polymeric nanofibrous membranes for water treatment: fabrication, modification and applications[J]. Progress in Polymer Science, 2018, 77: 69-94.
22 Wen H F, Yang C, Yu D G, et al. Electrospun zein nanoribbons for treatment of lead-contained wastewater[J]. Chemical Engineering Journal, 2016, 290: 263-272.
23 Neghlani P K, Rafizadeh M, Taromi F A. Preparation of aminated-polyacrylonitrile nanofiber membranes for the adsorption of metal ions: comparison with microfibers[J]. Journal of Hazardous Materials, 2011, 186(1): 182-189.
24 Li J J, Feng H T, He J M, et al. Coaxial electrospun zein nanofibrous membrane for sustained release[J]. Journal of Biomaterials Science, Polymer Edition, 2013, 24(17): 1923-1934.
25 Lin J T, Li C H, Zhao Y, et al. Co-electrospun nanofibrous membranes of collagen and zein for wound healing[J]. ACS Applied Materials & Interfaces, 2012, 4(2): 1050-1057.
26 Yu D G, Chian W, Wang X, et al. Linear drug release membrane prepared by a modified coaxial electrospinning process[J]. Journal of Membrane Science, 2013, 428: 150-156.
27 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 塑料 拉伸性能的测定: GB/T 1040—2006[S]. 北京: 中国标准出版社, 2006.
General Administration of Quality Supervision, Inspection and Quarantine of the People s Republic of China, Standardization Administration of the People s Republic of China. Plastics—determination of tensile properties: GB/T 1040—2006[S]. Beijing: Standards Press of China, 2006.
28 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 水质 镍的测定 火焰原子吸收分光光度法: GB/T 11912—1989[S]. 北京: 中国标准出版社, 1989.
General Administration of Quality Supervision, Inspection and Quarantine of the People s Republic of China, Standardization Administration of the People s Republic of China. Water quality—determination of nickel—flame atomic absorption spectrometric method: GB/T 11912—1989[S]. Beijing: Standards Press of China, 1989.
29 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 水质 铜、锌、铅、镉的测定 原子吸收分光光度法: GB 7475—1987[S]. 北京: 中国标准出版社, 1987.
General Administration of Quality Supervision, Inspection and Quarantine of the People s Republic of China, Standardization Administration of the People s Republic of China. Water quality—determination of copper, zinc, lead and cadmium—atomic absorption spectrometry: GB 7475—1987[S]. Beijing: Standards Press of China, 1987.
30 Chang F C, Chan K K, Chang C Y. The effect of processing parameters on formation of lignosulfonate fibers produced using electrospinning technology[J]. Bioresources, 2016, 11(2): 4705-4717.
31 Pakravan M, Heuzey M C, Ajji A. Core-shell structured PEO-chitosan nanofibers by coaxial electrospinning[J]. Biomacromolecules, 2012, 13(2): 412-421.
[1] 孙苏芮, 王德昌, 张金翠, 刘振, 李延辉. 膜蓄能器放能过程的传热传质特性分析[J]. 化工学报, 2020, 71(S1): 158-165.
[2] 王晨, 折晓会, 张小松. 含空气净化过程的液态空气储能热力学研究[J]. 化工学报, 2020, 71(S1): 23-30.
[3] 滕达, 李铁林, 李昂, 安连锁, 沈国清, 张世平. 单通道陶瓷膜管低压透水性能实验分析[J]. 化工学报, 2020, 71(S1): 261-271.
[4] 赵惠忠, 雷敏, 黄天厚, 刘涛, 张敏. 复合吸附剂MWCNT/MgCl2的水蒸气吸附性能[J]. 化工学报, 2020, 71(S1): 272-281.
[5] 陆俊杰, 张炜, 谢方民, 焦永峰. 一种自适应柱状密封气膜特性分析[J]. 化工学报, 2020, 71(S1): 346-354.
[6] 吴文翔, 韩小渠, 周志杰, 王宇, 种道彤. 循环转轮空调系统变工况除湿特性[J]. 化工学报, 2020, 71(S1): 355-360.
[7] 刘博文, 邓帅, 李双俊, 赵力, 杜振宇, 陈丽锦. 变温吸附碳捕集系统能效性能实验研究[J]. 化工学报, 2020, 71(S1): 382-390.
[8] 孙艳, 刘士涛, 邓尚, 余丽芸, 吕东伟, 马军, 刘献斌. 负载羧基化球状介孔纳米颗粒TFN膜的研究[J]. 化工学报, 2020, 71(S1): 454-460.
[9] 李志强, 吕娜, 蒋兰英. 商业正渗透膜的改性及其用于处理焦化废水的研究[J]. 化工学报, 2020, 71(S1): 461-470.
[10] 吴延鹏, 赵薇, 陈凤君. 不同相对湿度下亲疏水纳米纤维膜空气过滤性能实验研究[J]. 化工学报, 2020, 71(S1): 471-478.
[11] 龚志明, 王瑞祥, 邢美波. 全氟烷基表面活性剂吸附特性研究[J]. 化工学报, 2020, 71(4): 1754-1761.
[12] 陈汇龙, 桂铠, 韩婷, 谢晓凤, 陆俊成, 赵斌娟. 上游泵送机械密封润滑膜固体颗粒沉积特性研究[J]. 化工学报, 2020, 71(4): 1712-1722.
[13] 黄珊, 陆勇泽, 朱光灿, 孔赟. 耦合生物阴极SND的MLMB -MFC的构建与运行[J]. 化工学报, 2020, 71(4): 1772-1780.
[14] 万豫, 张敏, 翁云宣, 李成涛. 酵母菌的致孔作用对PVA/CMC水凝胶性能的影响[J]. 化工学报, 2020, 71(4): 1828-1835.
[15] 李安玉, 李双莉, 余碧戈, 马爱英, 周鑫兰, 谢建慧, 蒋艳红, 邓华. 镁浸渍生物炭吸附氨氮和磷:制备优化和吸附机理[J]. 化工学报, 2020, 71(4): 1683-1695.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[3] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[4] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[5] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .
[6] 曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进展[J]. 化工学报, 2013, 64(3): 788 -800 .
[7] 陈小艳, 周骛, 蔡小舒, 黄燕, 袁益超. 大型喷雾粒径分布的图像法测量[J]. 化工学报, 2014, 65(2): 480 -487 .
[8] 吴美容, 张瑞, 周俊, 谢欣欣, 雍晓雨, 闫志英, 葛明民, 郑涛. 温度对产甲烷菌代谢途径和优势菌群结构的影响[J]. 化工学报, 2014, 65(5): 1602 -1606 .
[9] 乔冰, 高晗, 王亭杰, 金涌. 二氧化硅表面修饰硅烷偶联剂APTS的过程和机制[J]. 化工学报, 2014, 65(7): 2629 -2637 .
[10] 曹健, 牟鹏, 耿志强, 朱群雄. 工业系统超结构模型应用研究进展[J]. 化工学报, 2017, 68(3): 801 -810 .