化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1554-1561.doi: 10.11949/0438-1157.20191049

• 流体力学与传递现象 • 上一篇    下一篇

蒸发冷却条件下管内LiCl和CaCl2溶液降膜除湿性能对比

彭冬根(),徐少华   

  1. 南昌大学建筑工程学院,江西 南昌 330031
  • 收稿日期:2019-09-23 修回日期:2019-10-29 出版日期:2020-04-05 发布日期:2019-12-02
  • 通讯作者: 彭冬根 E-mail:ncu_hvac2013@163.com
  • 作者简介:彭冬根(1975—),男,博士,教授,ncu_hvac2013@163.com
  • 基金资助:
    国家自然科学基金项目(51766010);江西省研究生创新专项资金项目(YC2018-S122);南昌市高效制冷技术创新团队项目(2018-CXTD-004)

Experimental comparison on dehumidification performance of LiCl and CaCl2 under evaporative cooling condition

Donggen PENG(),Shaohua XU   

  1. School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, Jiangxi, China
  • Received:2019-09-23 Revised:2019-10-29 Online:2020-04-05 Published:2019-12-02
  • Contact: Donggen PENG E-mail:ncu_hvac2013@163.com

摘要:

介绍了一种基于蒸发冷却的外冷型溶液除湿装置设计原理及实验样机结构。分别以LiCl和CaCl2溶液为除湿剂,以除湿率和除湿空气出口温度为评价指标,通过实验对比分析了LiCl和CaCl2在蒸发冷却条件下的除湿性能差异。结果表明:在所有实验条件下,浓度为0.35的LiCl溶液与浓度为0.45的CaCl2溶液除湿性能相似,其除湿率与对应空气出口温度均高于浓度为0.35的CaCl2溶液;浓度为0.35的LiCl溶液比浓度为0.35的CaCl2溶液的除湿率要约提高73%,并且空气流量越大其绝对提高值越大。另外,蒸发冷却空气流量增加除使除湿率增加外还会降低空气出口温度,约1.4℃;改变喷淋水温度对CaCl2溶液除湿性能的影响比对LiCl溶液更为明显。研究结果为该种外冷型溶液除湿器的实际应用提供参考。

关键词: 水溶液, 传热传质, 实验验证, 蒸发冷却, 除湿

Abstract:

The paper introduces the design principle and experimental prototype structure of an external cooling solution dehumidifier based on evaporative cooling. By using the LiCl and CaCl2 solution as liquid desiccant and taking the dehumidification rate and corresponding dehumidification air outlet temperature as evaluation indexes, the dehumidification performance difference of LiCl and CaCl2 solutions under externally evaporative cooling conditions are analyzed and compared through a series of experiments. The results show that the dehumidification performance of LiCl solution with 0.35 mass ratio is similar to that of CaCl2 solution with 0.45 mass ratio, whose dehumidification rate and corresponding air outlet temperature are both higher than CaCl2 solution with 0.35 mass ratio. Moreover, the dehumidification rate of LiCl solution with 0.35 mass ratio is about 73% higher than that of CaCl2 solution with 0.35 mass ratio, and the larger air flow rate leads to a greater dehumidification rate difference. In addition, the increase of evaporative cooling air flow rate can not only increase the dehumidification rate, but also reduce the corresponding air outlet temperature by about 1.4℃. The effect of the spray water temperature on the dehumidification performance of CaCl2 solution is more obvious than that of LiCl solution. The research results provide a reference for the practical application of this kind of externally cooled dehumidifier.

Key words: aqueous solution, heat/mass transfer, experimental validation, evaporative cooling, dehumidification

中图分类号: 

  • TU 831.6

图1

实验系统原理图与实物图 1—溶液泵; 2—板式换热器; 3—溶液桶1(浓溶液); 4—溶液桶2(稀溶液); 5—水泵; 6—管道加热器; 7—水阀; 8—流量计; 9—喷嘴(水); 10—除湿管; 11—管外肋片; 12—室内干湿球温度测量点; 13—顶部溶液槽; 14—底部溶液槽"

表1

实验测量参数及仪器"

测量参数 仪器 测量范围 测量误差
空气干湿球温度 热电偶 -10~50℃ ±0.1℃
空气流量 标准喷嘴+压力计 200~3000 m3/h ±1%
溶液温度 热电偶 0~100℃ ±0.1℃
溶液密度 密度计 1200~1300 kg/m3 ±1 kg/m3
密度计 1300~1400 kg/m3 ±1 kg/m3
密度计 1400~1500 kg/m3 ±1 kg/m3
溶液流量 流量计 0~10 L/min ±0.1 L/min
蒸发冷却空气流量 热线风速仪 0.3~30 m/s ±0.01 m/s
喷淋水温度 热电偶 0~100℃ ±0.1℃
喷淋水流量 流量计 0~10 L/min ±0.1 L/min

表2

除湿实验工况及范围"

参数 基准值 范围
空气干球温度(包括蒸发冷却空气)/℃

35.5

相对湿度(包括蒸发冷却空气)/%

59

56%~81%

空气流量/(kg/s) 0.16 0.07~0.38

溶液浓度

0.35(CaCl2, LiCl)
0.45(CaCl2)
溶液温度/℃ 30 26~36
溶液流量/( kg/s) 0.10 0.06~0.11
蒸发冷却空气流量/( kg/s) 0.6447519 0~1.12
喷淋水温度/℃ 32 32~40
喷淋水流量/(kg/s) 0.077

图2

空气相对湿度对除湿率和空气出口温度的影响"

图3

空气入口流量对除湿率和空气出口温度的影响"

图4

溶液入口温度对除湿率和空气出口温度的影响"

图5

溶液流量对除湿率和空气出口温度的影响"

图6

蒸发冷却空气流量对除湿率和空气出口温度的影响"

图7

喷淋水温度对除湿率和空气出口温度的影响"

1 汪行, 柳建华, 赵永杰, 等 . 液体除湿空调除湿器性能研究[J]. 制冷学报, 2017, 38(2): 45-50.
Wang X , Liu J H , Zhao Y J , et al . Study on the performance of dehumidifier with liquid desiccant[J]. Journal of Refrigeration, 2017, 38(2): 45-50.
2 杨昭, 张启, 马一太, 等 . 热泵空调除湿系统变工况运行季节用能效率的研究[J]. 太阳能学报, 2000, 21(1): 29-34.
Yang Z , Zhang Q , Ma Y T , et al . Seasonal efficiency of unitary air-conditioners and heat pumps at various humidity conditioners [J]. Acta Energiae Solaris Sinica, 2000, 21(1): 29-34.
3 江亿, 李震, 陈晓阳, 等 . 溶液除湿空调系列文章溶液式空调及其应用[J]. 暖通空调, 2004, 34(11): 88-97.
Jiang Y , Li Z , Chen X Y , et al . Liquid desiccant air-conditioning system and its applications[J]. Heating Ventilating & Air Conditioning, 2004, 34(11): 88-97.
4 邵彬, 殷勇高, 张小松 . 压缩空气溶液除湿中不同除湿剂除湿性能比较[J]. 化工学报, 2016, 67(9): 3566-3573.
Shao B , Yin Y G , Zhang X S . Comparison of drying performance of compressed air-drying system using different pressurized liquid desiccants[J]. CIESC Journal, 2016, 67(9): 3566-3573.
5 曾台烨, 张小松, 陈瑶 . 利用冷凝热再生低浓度除湿溶液的实验研究[J]. 制冷学报, 2018, (1): 76-82.
Zeng T Y , Zhang X S , Chen Y . Experimental investigation for low-ratio liquid desiccant regeneration with utilization of condensation heat [J]. Journal of Refrigeration, 2018, (1): 76-82.
6 苏博生, 韩巍, 徐聪, 等 . 低温余热驱动的工业除湿系统性能研究[J]. 工程热物理学报, 2017, 38(10): 2054-2060.
Su B S , Han W , Xu C , et al . Performance study of a liquid desiccant dehumidification on system driven by low-temperature heat for industrial application[J]. Journal of Engineering Thermophysics, 2017, 38(10): 2054-2060.
7 张凡, 殷勇高 . 一种低位热驱动除湿冷却空调系统的热性能分析[J]. 化工学报, 2016, 67: 275-283.
Zhang F , Yin Y G . Thermal performance analysis of liquid desiccant evaporative cooling air-conditioning system driven by low-grade heat[J]. CIESC Journal, 2016, 67: 275-283.
8 杨英, 李心刚, 李惟毅, 等 . 液体除湿特性的实验研究[J]. 太阳能学报, 2000, 21(2): 155-159.
Yang Y , Li X G , Li W Y , et .al. Experimental study on the characteristics of solar powered liquid dehumidification system[J]. Acta Energiae Solaris Sinica, 2000, 21(2): 155-159.
9 彭春发, 柳建华, 王学东, 等 . 液体除湿空调系统对室内颗粒物除尘效率实验研究[J]. 能源工程, 2018, (1): 38-42.
Peng C F , Liu J H , Wang X D , et al . Experimental study on dust removal efficiency of liquid desiccant air conditioning system on indoor particles[J]. Energy Engineering, 2018, (1): 38-42.
10 Patnaik S , Lenz T G , Lof G O G . Performance studies for an experimental solar open-cycle liquid desiccant air dehumidification system [J]. Solar Energy, 1990, 44(3): 123-135.
11 杨自力, 连之伟 . 基于理想除湿效率的液体除湿空调系统性能影响因素分析[J]. 上海交通大学学报, 2014, 48(6): 821-826.
Yang Z L , Lian Z W . Analysis of influencing factors on performance of the L.D.A.C. system based on the concept of ideal dehumidification efficiency[J]. Journal of Shanghai Jiao Tong University, 2014, 48(6): 821-826.
12 高文忠, 柳建华, 章学来 . 太阳能能叉流溶液除湿空调除湿性能实验分析[J]. 太阳能学报, 2012, 33(9): 1547-1552.
Gao W Z , Liu J H , Zhang X L . Experimental analysis of dehumidifier in the solar-driven cross-flow liquid desiccant air conditioning [J]. Acta Energiae Solaris Sinica, 2012, 33(9): 1547-1552.
13 涂敏, 汤广发, 任承钦, 等 . 溶液除湿系统中除湿塔的参数分析[J]. 化工学报, 2010, 61(10): 2546-2551.
Tu M , Tang G F , Ren C Q , et al . Analysis on parameters of dehumidification tower in liquid desiccant dehumidification systems[J]. CIESC Journal, 2010, 61(10): 2546-2551.
14 Lazzarin R M , Gasparella A , Longo G A . Chemical dehumidification by liquid desiccants: theory and experiment [J]. International Journal of Refrigeration, 1999, 22(4): 334-347
15 彭冬根, 张小松 . 应用于太阳能集热再生系统的除湿效率模型[J]. 农业工程学报, 2016, 32(1): 206-211.
Peng D G , Zhang X S . Dehumidification efficiency model for solar thermal regeneration system[J]. Technology of the Chinese Society of Agricultural Engineering, 2016, 32(1): 206-211.
16 Bassuoni M M . An experimental study of structured packing dehumidifier/ regenerator operating with liquid desiccant [J]. Energy, 2011, 36(5): 2628-2638.
17 Fumo N , Goswami D Y . Study of an aqueous lithium chloride desiccant system: air dehumidification and desiccant regeneration [J]. Solar Energy, 2002, 72(4): 351-361.
18 Khan A Y . Cooling and dehumidification performance analysis of internally-cooled liquid desiccant absorbers [J]. Applied Thermal Engineering, 1998, 18(5): 265-281.
19 Luo Y M , Shao S Q , Xu H B , et al . Experimental and theoretical research of a fin-tube type internally-cooled liquid desiccant dehumidifier [J]. Applied Energy, 2014, 133: 127-134.
20 Yin Y G , Zhang X S , Wang G , et al . Experimental study on a new internally cooled/heated dehumidifier/regenerator of liquid desiccant systems [J]. International Journal of Refrigeration, 2008, 31(5): 857-866.
21 Bansal P , Jain S , Moon C . Performance comparison of an adiabatic and an internally cooled structured packed- bed dehumidifier[J]. Applied Thermal Engineering, 2011, 31: 14-19.
22 Liu J , Liu X H , Zhang T . Performance comparison of three typical types of internally-cooled liquid desiccant dehumidifiers [J]. Building and Environment, 2016, 103: 134-145.
23 Hendijani A D , Gilani N . Mathematical modeling and parametric study of liquid desiccant system with internally-cooled dehumidifier [J]. Thermal Science and Engineering Progress, 2018, 5: 213-229.
24 Huang S M , Yang M L , Hu B , et al . Performance analysis of an internally-cooled plate membrane liquid desiccant dehumidifier (IMLDD): an analytical approach [J]. International Journal of Heat and Mass Transfer, 2018, 119: 577-585.
25 吴安民, 张鹤飞 . 内冷型液体除湿器数学模型及性能分析[J]. 太阳能学报, 2008, 29(7): 843-848.
Wu A M , Zhang H F . Mathematical model and performance analysis of an internally cooled liquid desiccant dehumidifier[J]. Acta Energiae Solaris Sinica, 2008, 29(7): 843-848.
26 Liu J , Zhang T , Liu X H , et al . Experimental analysis of an internally-cooled/heated liquid desiccant dehumidifier/regenerator made of thermally conductive plastic [J]. Energy and Buildings, 2015, 99: 75-86.
27 Woods J , Kozubal E . A desiccant-enhanced evaporative air conditioner: numerical model and experiments[J]. Energy Conversion & Management, 2013, 65: 208-220.
28 Cui X , Islam M R , Mohan B , et al . Theoretical analysis of a liquid desiccant based indirect evaporative cooling system[J]. Energy, 2016, 95: 303-312.
29 Fakhrabadi F , Kowsary F . Optimal design of a hybrid liquid desiccant-regenerative evaporative air conditioner[J]. Energy & Buildings, 2016, 133: 141-154.
30 Gao W Z , Cheng Y P , Jiang A G , et al . Experimental investigation on integrated liquid desiccant—indirect evaporative air cooling system utilizing the Maisotesenko - cycle[J]. Applied Thermal Engineering, 2015, 88: 288-296.
31 刘晓华, 江亿 . 温湿度独立控制空调系统[M]. 北京: 中国建筑工业出版社, 2006: 204-210.
Liu X H , Jiang Y . Temperature and Humidity Independent Control Air-conditioning System[M]. Beijing: China Architecture & Building Press, 2996: 204-210.
32 由玉文, 蒋晖, 王劲松, 等 . 高温高湿地区间接蒸发冷却空调机组的应用分析研究[J]. 流体机械, 2019, 47(8): 71-75.
You Y W , Jiang H , Wang J S , et al . Application and analysis of indirect evaporative cooling air conditioning unit in hot and humid area[J]. Fluid Machinery, 2019, 47(8): 71-75.
[1] 李庭樑, 岑继文, 黄文博, 曹文炅, 蒋方明. 超长重力热管传热性能实验研究[J]. 化工学报, 2020, 71(3): 997-1008.
[2] 杨锋苓, 张翠勋, 苏腾龙. 柔性Rushton搅拌桨的功耗与流场特性研究[J]. 化工学报, 2020, 71(2): 614-625.
[3] 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137.
[4] 唐凌虹, 杜雪平, 曾敏. 进风角度对椭圆管翅式换热器传热性能影响[J]. 化工学报, 2019, 70(S2): 138-145.
[5] 支恩玮, 闫飞, 任密蜂, 阎高伟. 基于迁移变分自编码器-标签映射的湿式球磨机负荷参数软测量[J]. 化工学报, 2019, 70(S1): 150-157.
[6] 商辉, 刘露, 王瀚墨, 张文慧. 微波电场对甘油水溶液体系中氢键的影响[J]. 化工学报, 2019, 70(S1): 23-27.
[7] 陈裕博, 杨昭, 翟瑞, 冯彪, 吕子建, 赵文仲, 葛滢滢. R290/R1234yf与矿物油的互溶性测试及评价方法[J]. 化工学报, 2019, 70(9): 3248-3255.
[8] 张明振, 黄冬梅, 胡毅伟, 原琪, 席合一, 沈利铭, 段鹏征. 点火位置对乳胶泡沫水平火蔓延规律的影响[J]. 化工学报, 2019, 70(7): 2802-2810.
[9] 张昊, 申凯, 赖艳华, 崔琳, 董勇. 氯化钙溶液喷雾闪蒸再生特性模拟及试验分析[J]. 化工学报, 2019, 70(6): 2269-2278.
[10] 刘培启, 何昕琛, 陈佳, 郭江涛, 席建宇, 胡大鹏. 锥芯可调型引射技术变工况适应性实验研究[J]. 化工学报, 2019, 70(6): 2252-2258.
[11] 冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722.
[12] 张爽, 赵蕾, 高林, 刘华. 并联双U形桩基埋管换热器热-力学特征的数值仿真研究[J]. 化工学报, 2019, 70(5): 1750-1760.
[13] 段继海, 黄帅彪, 高昶, 陈阿强, 黄青山. 锥体开缝对水力旋流器固液分离性能的影响[J]. 化工学报, 2019, 70(5): 1823-1831.
[14] 王静娴, 郑友林, 胡恒, 魏蓓, 李奇, 胡大鹏. 双开口气波制冷机振荡管内流动机理实验研究[J]. 化工学报, 2019, 70(4): 1302-1308.
[15] 邱君君, 张小松, 李玮豪. 无霜空气源热泵系统冬季除湿性能初步实验[J]. 化工学报, 2019, 70(4): 1605-1613.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[3] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[4] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[5] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .
[6] 曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进展[J]. 化工学报, 2013, 64(3): 788 -800 .
[7] 陈小艳, 周骛, 蔡小舒, 黄燕, 袁益超. 大型喷雾粒径分布的图像法测量[J]. 化工学报, 2014, 65(2): 480 -487 .
[8] 吴美容, 张瑞, 周俊, 谢欣欣, 雍晓雨, 闫志英, 葛明民, 郑涛. 温度对产甲烷菌代谢途径和优势菌群结构的影响[J]. 化工学报, 2014, 65(5): 1602 -1606 .
[9] 曹健, 牟鹏, 耿志强, 朱群雄. 工业系统超结构模型应用研究进展[J]. 化工学报, 2017, 68(3): 801 -810 .
[10] 郭志超, 张丽伟, 程素君. 核壳结构α-Fe2O3锂离子电池阳极材料制备及应用[J]. 化工学报, 0, (): 3638 -3644 .