化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 479-485.doi: 10.11949/0438-1157.20191033

• 材料化学工程与纳米技术 • 上一篇    下一篇

石墨烯纳米片-乙二醇纳米流体光热转化特性研究

李富恒()   

  1. 上海海事大学商船学院,上海 201306
  • 收稿日期:2019-09-16 修回日期:2019-10-21 出版日期:2020-04-25 发布日期:2020-05-22
  • 通讯作者: 李富恒 E-mail:2445045219@qq.com

Investigation on photothermal conversion characteristics of graphene nanosheets-glycol nanofluids

Fuheng LI()   

  1. Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China
  • Received:2019-09-16 Revised:2019-10-21 Online:2020-04-25 Published:2020-05-22
  • Contact: Fuheng LI E-mail:2445045219@qq.com

摘要:

纳米流体应用于太阳能集热器是太阳能光热转化的重要突破,石墨烯纳米材料在可见光和近红外区域具有较好的吸收特性,实验基于Hummer法制备了石墨烯纳米片材料,对其进行表征。并配制了不同质量分数石墨烯纳米片-乙二醇纳米流体,将其在太阳能模拟器下进行闷晒实验,计算石墨烯纳米片的光热转化效率,并以基液作对比分析其光热转化特性。结果表明纳米流体溶液的光热转化效率随着其浓度的增加而提高,在达到临界值后光热转化效率不再提高反而降低。其中浓度为0.0007%(质量)时的石墨烯纳米片纳米流体溶液温度增加最高,为65.56℃,光热转化效率达到最高约为76.35%,较乙二醇效率升高49.65%。表明石墨烯纳米片具有良好的光学特性,在太阳能集热器中具有较好的应用前景。

关键词: 纳米流体, 石墨烯纳米片, 乙二醇, 光热转化

Abstract:

The application of nanofluids to solar collectors is an important breakthrough in solar thermal conversion. Graphene nanomaterials have good absorption properties in visible and near-infrared regions.The graphene nanosheet material was prepared by Hummer method and characterized. Different mass fractions of graphene nanosheets-ethylene glycol nanofluids were configured. The smouldering test was carried out under the solar simulator and the photothermal conversion efficiency of the graphene nanosheets was calculated, and the photothermal conversion characteristics were compared with the base liquid. The results show that the photothermal conversion efficiency of the nanofluid solution increases with the increase of its concentration. After reaching the critical value, the photothermal conversion efficiency no longer increases but decreases. Among them,the temperature increase of graphene nanosheet nanofluid solution at the concentration of 0.0007%(mass) is up to 65.56℃, the photothermal conversion efficiency is 76.35%, and the ethylene glycol efficiency is increased by 49.65%. It indicates that graphene nanosheets have good optical properties and have good application prospects in solar collectors.

Key words: nanofluids, graphene nanosheets, ethylene glycol, photothermal conversion

中图分类号: 

  • TK 01

图1

太阳能模拟器系统图"

图2

石墨烯纳米片的扫描电镜图"

图3

吸收光谱"

图4

XRD图像"

图5

光谱透过率"

图6

消光系数"

图7

光热测试图"

图8

散热率"

图9

最大温度提升"

图10

光热转化效率"

表1

不同浓度石墨烯纳米片纳米流体的光热转化效率"

Concentration/%(mass)PTC effectiveness/%Improve/%
051.02
0.000154.566.94
0.000366.8130.95
0.000570.8338.83
0.000776.3549.65
0.00173.8144.67
1 Brini R, Amara M, Jemmali H. Renewable energy consumption, international trade, oil price and economic growth inter-linkages: the case of tunisia[J]. Renew. Sustain. Energy Rev., 2017, 76(9): 620-627.
2 Mussard M. Solar energy under cold climatic conditions: a review[J]. Renew. Sustain. Energy Rev., 2017, 74(7): 733-745.
3 Johansson T B, Patwardhan A P. Global energy assessment—toward a sustainable future [J]. Bibliogr., 2012, 3/4(31): 9-17.
4 Xiao C F, Luo H L, Tang R S, et al. Solar thermal utilization in China[J]. Renewable Energy, 2004, 29(9): 1549-1556.
5 Shafieian A, Khiadani M, Nosrati A. Strategies to improve the thermal performance of heat pipe solar collectors in solar systems: a review[J]. Energy Conversion and Management, 2019, 183(3): 307-331.
6 Fu H D, Zhao X X, Ma L, et al. A comparative study on three types of solar utilization technologies for buildings: photovoltaic, solar thermal and hybrid photovoltaic/thermal systems[J]. Energy Conversion and Management, 2017, 140(15): 1- 13.
7 Leite G N P, Weschenfelder F, Araújo A M, et al. An economic analysis of the integration between air-conditioning and solar photovoltaic systems [J]. Energy Conversion and Management, 2019,185(4): 836-849.
8 Fang J, Liu Q B, Guo S P, et al. Spanning solar spectrum: a combined photochemical and thermochemical process for solar energy storage[J]. Applied Energy, 2019, 247(8): 116-126.
9 Fang J, Liu Q B, Guo S P, et al. A full-spectrum solar chemical energy storage system with photochemical process and thermochemical process[J]. Energy Procedia, 2018, 152(10): 1063-1068.
10 Otanicar T P, Phelan P E, Patrick R S, et al. Nanofluid based direct absorption solar collector[J]. Renew. Sustain. Energy Rev., 2010, 2(3): 1063-1073.
11 Robert A T,Patrick E P, Todd P O, et al. Nanofluid opticalproperty characterization: towards efficient direct absorption solar collectors[J]. Nanoscale Res., 2011,225(6):207-218.
12 Gorji T B, Ranjbar A A. A review on optical properties and application of nanofluids in direct absorption solar collectors(DASCs) [J]. Renew. Sustain. Energy Rev., 2017, 72(5): 10-32.
13 Minardi J E, Chuang H N. Performance of a “black” liquid flat-plate solar collector[J]. Sol. Energy, 1975, 17(3): 179-183.
14 Choi S U S, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles[J]. ASME, 1995, 23(1): 99-105.
15 Bandarra E P, Mendoza O S H, Beicker C L L, et al. Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system[J]. Energy Convers. Manag., 2014, 84(8): 261-267.
16 Amjad M, Yang Y, Raza G. Deposition pattern and tracer particle motion of evaporating multi-component sessile droplets[J]. Colloid Interface Sci., 2017, 506(11): 83-92.
17 Zamzamian A, KeyanpourRad M, KianiNeyestani M Y, et al. An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors[J]. Renewable Energy, 2014, 74(11): 658-664.
18 Jamal-Abad M T, Zamzamian A, Imani E, et al. Experimental study of the performance of a flat-plate collector using Cu-water nanofluid[J]. Thermophys. Heat Transf., 2013, 27(4): 756-760.
19 Chen M J, He Y R, Zhu J Q, et al. Enhancement of photo-thermal conversion using gold nanofluids with different particle sizes [J]. Energy Convers. Manag., 2016, 112(3): 21-30.
20 Zhang H, Chen H J, Du X, et al. Photothermal conversion characteristics of gold nanoparticle dispersions [J]. Sol. Energy, 2014, 100(2): 141-147.
21 Gupta H K, Agrawal G D, Mathur J. An experimental investigation of a low temperature Al2O3-H2O nanofluid based direct absorption solar collector[J]. Sol. Energy, 2015, 118(8): 390-396.
22 Mahian O, Kianifar A, Sahin A Z, et al. Entropy generation during Al2O3/water nanofluid flow in a solar collector: effects of tube roughness, nanoparticle size, and different thermophysical models[J]. Heat and Mass Transf., 2014, 78(11): 64-75.
23 Farajzadeh E, Movahed S, Hosseini R. Experimental and numerical investigations on the effect of Al2O3/TiO2/H2O nanofluids on thermal efficiency of the flat plate solar collector [J]. Renewable Energy, 2018, 118(8): 122-130.
24 Goudarzi K, Shojaeizadeh E, Nejati F. An experimental investigation on the simultaneous effect of CuO-H2O nanofluid and receiver helical pipe on the thermal efficiency of a cylindrical solar collector[J]. Appl. Therm. Eng., 2014, 73(1): 1234-1241.
25 Karami M, Akhavan-Bahabadi M A, Delfani S, et al. Experimental investigation of CuO nanofluid based direct absorption solar collector for residential applications[J]. Renew. Sustain. Energy Rev., 2015, 52(12): 793-801.
26 Meibodi S S, Kianifar A, Niazmand H, et al. Experimental investigation on the thermal efficiency and performance characteristics of a flat plate solar collector using SiO2/EG- water nanofluids[J]. International Communications in Heat and Mass Transfer, 2015, 65(7): 71-75.
27 Gupta H K, Agrawal G D, Mathur J. An experimental investigation of a low temperature Al2O3-H2O nanofluid based direct absorption solar collector[J]. Sol. Energy, 2015, 118(8): 390-396.
28 Karami M, Akhavan-Bahabadi M A, Delfani S, et al. A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector[J]. Sol. Energy Mater. Sol. Cells, 2014, 121(2): 114-118.
29 Khullar V, Tyagi H, Phelan P E, et al. Solar energy harvesting using nanofluids-based concentrating solar collector[J]. Nanotechnol. Eng. Med., 2013, 3(3): 310-319.
30 Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 30(6): 666-669.
31 郭晓琴, 王永凯, 余小霞, 等. 石墨烯纳米片的制备和表征[J]. 化工新型材料, 2013, (7): 128-130.
Guo X Q, Wang Y K, Yu X X, et al. Preparation and characterization of graphene nanosheets[J]. New Chemical Materials, 2013, (7): 128-130.
[1] 田东民, 吴延鹏, 陈凤君. 基于纳米增强相变材料的铜-水热管传热性能分析[J]. 化工学报, 2020, 71(S1): 220-226.
[2] 陈巨辉, 韩坤, 王帅, 李铭坤, 陈纪元, 马明. 基于反扰动非平衡分子动力学的纳米流体导热增强机理研究[J]. 化工学报, 2019, 70(6): 2147-2152.
[3] 闫鑫, 徐进良. 超疏水表面太阳能加热金-水纳米流体液滴蒸发特性[J]. 化工学报, 2019, 70(3): 892-900.
[4] 朱顺, 郭琦, 张大伟, 杨庆春. 集成CO2高效利用的煤制乙二醇过程设计与系统分析[J]. 化工学报, 2019, 70(2): 772-779.
[5] 金铭, 胡定华, 李强, 范德松. Al2O3纳米流体液滴蒸发特性的数值模拟研究[J]. 化工学报, 2019, 70(11): 4199-4206.
[6] 田雅洁, 林文胜. 船用绕管式LNG气化器方案对比[J]. 化工学报, 2018, 69(S2): 141-146.
[7] 任永胜, 何婷婷, 谢娟, 蔡超. 333.15 K K+,NH4+//Cl-,SO42--H2O和K+,NH4+//Cl-,SO42--(CH2OH)2-H2O体系固液相平衡[J]. 化工学报, 2018, 69(7): 2838-2850.
[8] 王佳骏, 郎中敏, 于戈文, 吴刚强. CuO/H2O纳米流体的池沸腾传热及预测[J]. 化工学报, 2018, 69(7): 2944-2955.
[9] 刘珍, 张忠强. 石墨烯纳米通道中富勒烯纳米流体的压力驱动流动特性[J]. 化工学报, 2018, 69(5): 1892-1899.
[10] 李阳, 杜乐, 高若梅, 吴偲, 龚亚辉. 微通道中原位分散技术可控制备氧化铜纳米流体及复合薄膜前体[J]. 化工学报, 2018, 69(11): 4918-4928.
[11] 熊亚选, 王振宇, 徐鹏, 吴玉庭, 丁玉龙, 马重芳. 添加纳米SiO2对单组分及二元硝酸盐热物性的影响[J]. 化工学报, 2018, 69(10): 4418-4426.
[12] 宗迅成, 胡蝶, 阚婷婷, 王婷婷, 邬敏辰. 定点突变提高菜豆环氧水解酶的对映选择性[J]. 化工学报, 2018, 69(10): 4335-4341.
[13] 朱林, 艾珍, 王大军, 王伟东, 金鑫, 丁亮, 许光文. 使用N-甲酰吗啉和聚乙二醇二甲醚溶剂分离H2S和CO2流程模拟比较[J]. 化工学报, 2017, 68(S1): 218-224.
[14] 黄志辉, 包永忠, 潘鹏举. 可逆加成-断裂链转移聚合制备聚氯乙烯-b-聚乙二醇-b-聚氯乙烯共聚物[J]. 化工学报, 2017, 68(6): 2569-2576.
[15] 吴晗, 杨峻. 多壁碳纳米管-水纳米流体导热机理及重力热管实验研究[J]. 化工学报, 2017, 68(6): 2315-2320.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩进, 朱彤, 今井刚, 谢里阳, 徐成海, 野崎勉. 基于高速转盘法的剩余污泥可溶化处理 [J]. 化工学报, 2008, 59(2): 478 -483 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[4] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[5] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[6] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[7] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[8] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[9] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .
[10] 汪泽华,蔡卫权,郭蕾,童亚超,胡玉珍. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报, 2012, 63(8): 2623 -2628 .