化工学报 ›› 2020, Vol. 71 ›› Issue (3): 1317-1325.doi: 10.11949/0438-1157.20191021

• 能源和环境工程 • 上一篇    下一篇

化学与湍流团聚耦合促进燃煤细颗粒物团聚与脱除

孙宗康(),张笑丹,杨林军(),陈帅,吴新   

  1. 东南大学能源热转换及其过程测控教育部重点实验室,能源与环境学院,江苏 南京 210096
  • 收稿日期:2019-09-09 修回日期:2019-10-22 出版日期:2020-03-05 发布日期:2019-10-31
  • 通讯作者: 杨林军 E-mail:szkcheer725@163.com;ylj@seu.edu.cn
  • 作者简介:孙宗康(1991—),男,博士研究生,szkcheer725@163.com
  • 基金资助:
    国家重点研发计划项目(2016YFB0600602)

Promoting the agglomeration and removal of coal-fired fine particles by coupling of chemical and turbulent agglomeration

Zongkang SUN(),Xiaodan ZHANG,Linjun YANG(),Shuai CHEN,Xin WU   

  1. Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, China
  • Received:2019-09-09 Revised:2019-10-22 Online:2020-03-05 Published:2019-10-31
  • Contact: Linjun YANG E-mail:szkcheer725@163.com;ylj@seu.edu.cn

摘要:

将化学团聚与湍流团聚技术耦合,实验研究了燃煤细颗粒物在化学与湍流团聚耦合作用下的团聚与脱除效果,以及颗粒物浓度、烟气温度、团聚液喷入量与烟气流速等因素对细颗粒物团聚与脱除效果的影响规律。结果表明,典型工况下化学-湍流耦合团聚能够进一步促进细颗粒物团聚长大以及静电除尘器对细颗粒物的脱除,其作用效果优于单独的化学与湍流团聚。随细颗粒物浓度的升高,团聚与脱除效率均逐渐下降,分别由49.2%与96.7%下降至35.3%与88.2%。随烟气温度与团聚液喷入量的增加,细颗粒物团聚与脱除效率均先升高后降低,并在180℃与12 L/h处达到最高值,团聚与脱除效率分别为44.7%与94.8%。随烟气流速的增加,细颗粒物团聚与脱除效率均逐渐升高,分别由30.5%与86.3%升高至50.2%与97.5%。

关键词: 气溶胶, 团聚, 化学喷雾, 湍流, 耦合, 脱除

Abstract:

By coupling the chemical agglomeration and turbulent agglomeration technology, the agglomeration and removal characteristics of coal-fired fine particles under the coupling effect of chemical and turbulent agglomeration, as well as the influence of particle concentration, flue gas temperature, flow rate of chemical agglomeration solution and flue gas velocity on them were studied experimentally. The results show that the chemical turbulence coupling agglomeration can further promote the agglomeration and growth of fine particles and the removal of fine particles by electrostatic procipitator under typical conditions, and its effect is better than that of the chemical turbulence agglomeration alone. With the increase of fine particle concentration, the agglomeration and removal efficiency decreased gradually, from 49.2% and 96.7% to 35.3% and 88.2% respectively. With the increase of flue gas temperature and flow rate of chemical agglomeration solution, the agglomeration and removal efficiency of fine particles first increased and then decreased, and they reached the maximum value at 180℃ and 12 L/h, which were 44.7% and 94.8%. With the increase of flue gas velocity, the agglomeration and removal efficiency of fine particles increased gradually, from 30.5% and 86.3% to 50.2% and 97.5% respectively.

Key words: aerosol, agglomeration, chemical spray, turbulent flow, coupling, removal

中图分类号: 

  • X 51

图1

化学-湍流耦合团聚实验系统"

图2

化学团聚剂液滴粒径分布"

图3

湍流聚并器结构"

图4

细颗粒物浓度变化"

图5

细颗粒物粒径分布变化"

图6

不同团聚方式后ESP出口细颗粒物浓度"

图7

不同团聚方式后细颗粒物分级脱除效率"

图8

不同颗粒物浓度下细颗粒物团聚与脱除效率"

图9

不同烟气温度下细颗粒物团聚与脱除效率"

图10

不同团聚液喷入量下细颗粒物团聚与脱除效率"

图11

不同烟气流速下细颗粒物团聚与脱除效率"

1 BP. BP Statistical review of world energy 2018[EB/OL]. [2018-07-30]. .
2 滕吉文, 乔勇虎, 宋鹏汉. 我国煤炭需求、探查潜力与高效利用分析[J]. 地球物理学报, 2016, 59(12): 4633-4653.
Teng J W, Qiao Y H, Song P H. Analysis of exploration, potential reserves and high efficient utilization of coal in China[J]. Chinese Journal of Geophysics, 2016, 59(12): 4633-4653.
3 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2017: 281-283.
National Bureau of Statistics of the People s Republic of China. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2017: 281-283.
4 Yin L Q, Niu Z C, Chen X Q, et al. Chemical compositions of PM2.5 aerosol during haze periods in the mountainous city of Yong an, China[J]. J. Environ. Sci.,2012, 24: 1225–1233.
5 Fan Z, Pun V C, Chen X, et al. Personal exposure to fine particles (PM2.5) and respiratory inflammation of common residents in Hong Kong[J]. Environ. Res.,2018, 164: 24–31.
6 Li Y J, Wang J H, Ren B N, et al. The characteristics of atmospheric phthalates in Shanghai: a haze case study and human exposure assessment[J]. Atmos. Environ.,2018, 178: 80–86.
7 徐杰英, 刘晶, 郑楚光. 燃烧源超细颗粒物的研究进展[J]. 煤炭转化, 2003, 26(4): 16-20.
Xu J Y, Liu J, Zheng C G. Advance in the research of ultrafine particulate matter from combustion[J]. Coal Conversion, 2003, 26(4): 16-20.
8 岳勇, 陈雷, 姚强, 等. 燃煤锅炉颗粒物粒径分布和痕量元素富集特性实验研究[J]. 中国电机工程学报, 2005, 25(18): 74-79.
Yue Y, Chen L, Yao Q, et al. Experimental study on characteristics of particulate matter size distribution and trace elements enrichment in emission from a pulverized coal-fired boiler[J]. Proceedings of the CSEE, 2005, 25(18): 74-79.
9 Pui Y H, Chen S C, Zuo Z L. PM2.5 in China: measurements, sources, visibility and health effects, and mitigation[J]. Particuology, 2014, 13: 1-26.
10 熊桂龙, 李水清, 陈晟, 等. 增强PM2.5脱除的新型电除尘技术的发展[J]. 中国电机工程学报, 2015, 35(9): 2217-2223.
Xiong G L,Li S Q,Chen S, et al. Development of advanced electrostatic precipitation technologies for reducing PM2.5 emissions from coal-fired power plants[J]. Proceedings of the CSEE, 2015, 35(9): 2217-2223.
11 陈冬林, 吴康, 曾稀. 燃煤锅炉烟气除尘技术的现状及进展[J]. 环境工程, 2014, 32(9): 70-73.
Chen D L, Wu K, Zeng X. Review on technology for dust removal from flue gas of coal-fired boilers[J]. Environmental Engineering, 2014, 32(9): 70-73.
12 李海英, 张春奇, 刘东. 细颗粒物PM2.5团聚除尘技术的研究进展[J]. 环境工程, 2018, 36(9): 93-99.
Li H Y, Zhang C Q, Liu D. Research progress of PM2.5 agglomeration and removal technology[J]. Environmental Engineering, 2018, 36(9): 93-99.
13 程治良, 谭其祥, 李瑞恒, 等. 工业细粒物PM2.5预团聚及去除新技术研究进展[J]. 重庆理工大学学报(自然科学), 2016, 30(6): 75-82.
Cheng Z L, Tan Q X, Li R H, et al. Review on pre-agglomeration and new removal methods of industrial fine particulate matter[J]. Journal of Chongqing University of Technology (Natural Science), 2016, 30(6): 75-82.
14 张光学, 朱颖杰, 周涛涛, 等. 喷雾对促进细颗粒物声波团聚的影响[J]. 化工学报, 2017, 68(3): 864-869.
Zhang G X, Zhu Y J, Zhou T T, et al. Improve acoustic agglomeration of fine particles by droplet spray[J]. CIESC Journal, 2017, 68(3): 864-869.
15 颜金培, 陈立奇, 杨林军. 燃煤细颗粒在过饱和氛围下声波团聚脱除的实验研究[J]. 化工学报, 2014, 65(8): 3243-3249.
Yan J P, Chen L Q, Yang L J. Agglomeration removal of fine particles at super-saturation steam by using acoustic wave[J]. CIESC Journal, 2014, 65(8): 3243-3249.
16 熊桂龙, 杨林军, 颜金培, 等. 用蒸汽相变脱除燃煤湿法脱硫净烟气中细颗粒物[J]. 化工学报, 2011, 62(10): 2932-2938.
Xiong G L, Yang L J, Yan J P, et al. Removal of fine particles by heterogeneous condensation from wet-process desulfurized flue gas[J]. CIESC Journal, 2011, 62(10): 2932-2938.
17 吴建东, 刘乔, 王昊. 带绕流板的湍流管道内细颗粒物沉积实验[J]. 化工学报, 2018, 69: 15-19.
Wu J D, Liu Q, Wang H. Experimental investigation of fine particle precipitation in rectangular duct with staggered baffles[J]. CIESC Journal, 2018, 69: 15-19.
18 李永旺, 吴新, 赵长遂, 等. 均匀磁场中磁种聚并脱除燃煤PM10实验研究[J]. 中国电机工程学报, 2007, 27(17): 23-28.
Li Y W, Wu X, Zhao C S, et al. Experimental study on aggregation of PM10 from coal combustion by magnetic seeding in uniform magnetic field[J]. Proceedings of the CSEE, 2007, 27(17): 23-28.
19 刘勇, 赵汶, 刘瑞, 等. 化学团聚促进电除尘脱除PM2.5的实验研究[J]. 化工学报, 2014, 65(9): 3609-3616.
Liu Y, Zhao W, Liu R, et al. Improving removal of PM2.5 by electrostatic precipitator with chemical agglomeration[J]. CIESC Journal, 2014, 65(9): 3609-3616.
20 胡斌, 刘勇, 杨春敏, 等. 化学团聚促进电除尘脱除烟气中PM2.5和SO3[J]. 化工学报, 2016, 67(9): 3902-3909.
Hu B, Liu Y, Yang C M, et al. Simultaneous control of PM2.5 and SO3 by chemical agglomeration collaborative electrostatic precipitation[J]. CIESC Journal, 2016, 67(9): 3902-3909.
21 郭沂权, 赵永椿, 李高磊, 等. 300MW燃煤电站化学团聚强化飞灰细颗粒物排放控制的研究[J]. 中国电机工程学报, 2019, 39(3): 754-763.
Guo Y Q, Zhao Y C, Li G L, et al. Research on emission characteristics of chemical agglomeration of fly ash fine particles from a 300MW coal-fired power plant boiler[J]. Proceedings of the CSEE, 2019, 39(3): 754-763.
22 陈冬林, 杨陈好, 吴康, 等. 烟气参数对细颗粒湍流聚并的影响[J]. 环境工程学报, 2017, 11(9): 5084-5090.
Chen D L, Yang C H, Wu K, et al. Influences of turbulent agglomeration of fine particles under flue gas parameters[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5084-5090.
23 孙德帅, 郭庆杰, 司崇殿. 气体射流作用下燃煤可吸入颗粒的团聚[J]. 过程工程学报, 2009, 9(3): 437-440.
Sun D S, Guo Q J, Si C D. Agglomeration of inhalable particles in gas jet[J]. The Chinese Journal of Process Engineering, 2009, 9(3): 437-440.
24 章鹏飞, 米建春, 潘祖明. 烟气流速和装置元件角度对细颗粒湍流聚并的影响[J]. 中国电机工程学报, 2016, 36(10): 2714-2719.
Zhang P F, Mi J C, Pan Z M. Influences of flue-gas velocity and device-element angle on fine particle amalgamation[J]. Proceedings of the CSEE, 2016, 36(10): 2714-2719.
25 章鹏飞, 米建春, 潘祖明. 装置元件排列间距和颗粒浓度对细颗粒湍流聚并的影响[J]. 中国电机工程学报, 2016, 36(6): 1625-1632.
Zhang P F, Mi J C, Pan Z M. Influences of elemental arrangement and particle concentration on fine particle amalgamation[J]. Proceedings of the CSEE, 2016, 36(6): 1625-1632.
26 Sun Z K, Yang L J, Shen A, et al. Improving the removal of fine particles from coal combustion in the effect of turbulent agglomeration enhanced by chemical spray[J]. Fuel,2018, 234: 558–566.
27 Ylätalo S, Kauppinen E, Hautanen J, et al. On the determination of electrostatic precipitator efficiency by differential mobility analyzer[J]. J. Aerosol. Sci., 1992, 23(Supplement 1): 795–798.
28 靳星. 静电除尘器内细颗粒物脱除特性的技术基础研究[D]. 北京: 清华大学, 2013.
Jin X. Research on the capture technology of fine particles in electrostatic precipitator[D]. Beijing: Tsinghua University, 2013.
29 赵永椿, 张军营, 魏凤, 等. 燃煤超细颗粒物团聚促进机制的实验研究[J]. 化工学报, 2007, 58(11): 2876-2881.
Zhao Y C, Zhang J Y, Wei F, et al. Experimental study on agglomeration of submicron particles from coal combustion[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(11): 2876-2881.
30 刘加勋. 燃煤飞灰化学团聚实验研究及机理分析[D]. 哈尔滨: 哈尔滨工业大学, 2008.
Liu J X. Experimental study and mechanism analysis on particle spray agglomeration from coal combustion[D]. Harbin: Harbin Institute of Technology, 2008.
31 章澄昌, 周文贤. 大气气溶胶教程[M]. 北京: 气象出版社, 1995: 117-123.
Zhang C C, Zhou W X. Aerosol Tutorial[M]. Beijing: Meteorlogy Press, 1995: 117-123.
32 杨振楠, 郭庆杰. 气固射流作用下可吸入燃煤飞灰颗粒的团聚[J]. 高校化学工程学报, 2011, 25(2): 71-75.
Yang Z N, Guo Q J. Agglomeration of coal combustion fly ash inhalable particles in presence of gas-solid jet flow[J]. Journal of Chemical Engineering of Chinese Universities, 2011, 25(2): 71-75.
[1] 李济超, 季璨, 吕明明, 王静, 刘志刚, 李慧君. 微通道内单柱绕流特性的Micro-PIV实验研究[J]. 化工学报, 2020, 71(4): 1597-1608.
[2] 车健, 江锦波, 李纪云, 彭旭东, 马艺, 王玉明. 节流孔出气模式对静压干气密封稳态性能影响[J]. 化工学报, 2020, 71(4): 1734-1743.
[3] 董吉开, 杜文莉, 王冰, 许乔伊. 湍流状态下化学品扩散溯源中不同目标函数的影响分析[J]. 化工学报, 2020, 71(3): 1163-1173.
[4] 王修纲, 吴裕凡, 郭潞阳, 路庆华, 叶晓峰, 曹育才. 聚合釜传热性能的实验研究及数值模拟[J]. 化工学报, 2020, 71(2): 584-593.
[5] 高思鸿, 刘堉学, 范怡平, 卢春喜. 新型旋流场-颗粒床耦合分离设备静压分布[J]. 化工学报, 2020, 71(2): 516-525.
[6] 田亚晓, 王乃用, 李常兴, 杜文静. 泡沫镍板冷却特性的实验研究及数值模拟[J]. 化工学报, 2019, 70(S1): 79-85.
[7] 王斯民, 孙利娟, 宋晨, 张早校, 文键. 螺旋扁管折流杆换热器壳侧性能多目标优化研究[J]. 化工学报, 2019, 70(9): 3353-3362.
[8] 周雷, 周骛, 郭延昂, 蔡小舒. 射流卷吸边界层内相干结构的实验研究[J]. 化工学报, 2019, 70(7): 2520-2527.
[9] 宋楠, 潘敏建, 陈炳旭, 钱刚, 段学志, 周兴贵. 费托催化剂η-Fe2C (011)上CH4形成及C-C耦合机理研究[J]. 化工学报, 2019, 70(7): 2540-2547.
[10] 王昱焜, 张现仁, 曹达鹏. 利用κ-Köhler理论研究大气气溶胶的吸湿特性[J]. 化工学报, 2019, 70(7): 2691-2698.
[11] 王龙, 刘会娥, 刘宇童, 于云飞, 陈爽, 于文赫, 张秀霞. 微乳液法用于落地原油应急处理及资源回收的研究[J]. 化工学报, 2019, 70(7): 2699-2707.
[12] 沈伟, 彭旭东, 江锦波, 李纪云. 高速超临界二氧化碳干气密封实际效应影响分析[J]. 化工学报, 2019, 70(7): 2645-2659.
[13] 彭婷, 袁中原, 袁艳平, 曹晓玲. 圆筒形地下立体停车库火灾火源位置与火势蔓延规律研究[J]. 化工学报, 2019, 70(6): 2397-2408.
[14] 彭超, 王榆元, 邓昌爱, 赵方方, 游奎一. 连续反应-萃取耦合技术制备硫酸羟胺[J]. 化工学报, 2019, 70(5): 1842-1847.
[15] 喻健良, 侯玉洁, 闫兴清, 纪文涛, 于小哲, 王祎博. 密闭空间内聚乙烯粉尘爆炸火焰传播特性的实验研究[J]. 化工学报, 2019, 70(3): 1227-1235.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 高启君, 王宇新, 许莉, 卫国强, 王志涛. Proton-Exchange Sulfonated Poly(ether ether ketone)(SPEEK)/SiOx-S Composite Membranes in Direct Methanol Fuel Cells[J]. CIESC Journal, 2009, 17(2): 207 -213 .
[2] 胡春平, 颜学峰. An Immune Self-adaptive Differential Evolution Algorithm with Application to Estimate Kinetic Parameters for Homogeneous Mercury Oxidation[J]. CIESC Journal, 2009, 17(2): 232 -240 .
[3] 阳庆元, 许青, 刘蓓, 仲崇立, Smit Berend. Molecular Simulation of CO2/H2 Mixture Separation in Metal-organic Frameworks:Effect of Catenation and Electrostatic Interactions[J]. CIESC Journal, 2009, 17(5): 781 -790 .
[4] 李沃源, 毋伟, 邹海魁, 初广文, 邵磊, 陈建峰. A Mass Transfer Model for Devolatilization of Highly Viscous Media in Rotating Packed Bed[J]. CIESC Journal, 2010, 18(2): 194 -201 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. CIESC Journal, 2010, 18(5): 837 -842 .
[6] TAMILARASAN Rengasamy, ANAND PRABU Arun, KAP JIN Kim, DHARMENDIRA KUMAR Mahendradas. Effect of Dissolved Cadmium Chloride and Ammonium Chloride Salts on the Enthalpy of Mixing of the Methanol+Benzene System at 303.15 K[J]. CIESC Journal, 2010, 18(6): 995 -999 .
[7] 李绍军, 黄定伟. Simulation and Analysis on Multiple Steady States of an Industrial Acetic Acid Dehydration System[J]. CIESC Journal, 2011, 19(6): 983 -989 .
[8] 陈福明. 一种去除水中离子的新方法——充电富集法初探 [J]. CIESC Journal, 1999, 50(1): 114 -117 .
[9] 孙光, 蒋国祥, 刘新华, 孙国刚, 许光文. 循环型高通量输送床的建立与控制 [J]. 化工学报, 2008, 59(11): 2774 -2780 .
[10] 向波涛,王涛,沈忠耀. 超临界水氧化法处理醇类废水(Ⅰ)处理效果及过程参数的影响 [J]. CIESC Journal, 2000, 51(S1): 109 -112 .